
20.4 Dates and Time

21 Graphs, Networks, and Trees
Graphical representations are widely used for displaying relations among informational units because
they help readers to visualize those relations and hence to understand them better. Two general types of
graphical representations may be distinguished.

• Graphs, in the strictly mathematical sense, consist of points, often callednodesor vertices, and
connections among them, calledarcs, or under certain conditions,edges. Among the various
types of graphs arenetworksandtrees. Graphs generally and networks in particular are dealt
with directly below. Trees are dealt with separately in sections21.2Treesand21.3Another
Tree Notation.151

• Charts, which typically plot data in two or more dimensions, including plots with orthogonal
or radial axes, bar charts, pie charts, and the like. These can be described using the elements
defined in the additional tag set for figures and graphics; see chapter22Tables, Formulae, and
Graphics.

The following DTD fragment shows the overall organization of the tag set discussed in the remainder of
this chapter.

<!-- 21.: Graphs, networks and trees-->
<!--declarations from 21.1: Graphs inserted here -->
<!--declarations from 21.2: Trees (basic method) inserted here -->
<!--declarations from 21.3: Trees (alternate method) inserted here -->
<!-- end of 21.-->

This tag set is made available as described in3.3Invocation of the TEI DTD; in a document which uses the
markup described in this chapter, the document type declaration should contain the following declaration
for the entityTEI.nets:

<!ENTITY % TEI.nets 'INCLUDE'>

The entire document type declaration for an XML document using this additional tag set together with
the prose base might look like this:

<!DOCTYPE TEI.2 PUBLIC "-//TEI P4//DTD Main Document Type//EN"
"http://www.tei-c.org/P4X/DTD/tei2.dtd" [

<!ENTITY % TEI.XML 'INCLUDE' >
<!ENTITY % TEI.prose 'INCLUDE' >
<!ENTITY % TEI.nets 'INCLUDE' >

]>

Among the types of qualitative relations often represented by graphs are organizational hierarchies,
flow charts, genealogies, semantic networks, transition networks, grammatical relations, tournament
schedules, seating plans, and directions to people’s houses. In developing recommendations for the
encoding of graphs of various types, we have relied on their formal mathematical definitions and on the
most common conventions for representing them visually. However, it must be emphasized that these
recommendations do not provide for the full range of possible graphical representations, and deal only
partially with questions of design, layout and placement.

21.1 Graphs and Digraphs
Broadly speaking, graphs can be divided into two types:undirectedanddirected. An undirected graph
is a set ofnodes(or vertices) together with a set of pairs of those vertices, calledarcs or edges. Each
node in an arc of an undirected graph is said to beincidentwith that arc, and the two vertices which make
up an arc are said to beadjacent. An directed graph is like an undirected graph except that the arcs are
ordered pairsof nodes. In the case of directed graphs, the termedgeis not used; moreover, each arc in
an directed graph is said to beadjacent fromthe node from which the arc emanates, andadjacent tothe
node to which the arc is directed. We use the element<graph> to encode graphs as a whole,<node> to
encode nodes or vertices, and<arc> to encode arcs or edges; arcs can also be encoded by attributes on
the<node> element. These elements have the following descriptions and attributes:
<graph> encodes a graph, which is a collection of nodes, and arcs which connect the nodes.

Attributes include:
151 The treatment here is largely based on the characterizations of graph types in Gary Chartrand and Linda Lesniak,Graphs and
Digraphs(Menlo Park, CA: Wadsworth, 1986).

March 2002 517 TEI Consortium

21 Graphs, Networks, and Trees

type describes the type of graph.
Suggested values include:

undirected undirected graph
directed directed graph
transition network a directed graph with distinguished initial and final

nodes
transducer a transition network with up to two labels on each arc

label gives a label for a graph.
Values A character string.

order states the order of the graph, i.e., the number of its nodes.
Values A positive integer.

size states the size of the graph, i.e., the number of its arcs.
Values A non-negative integer.

<node> encodes a node, a possibly labeled point in a graph. Attributes include:
label gives a label for a node.

Values A character string.
label2 gives a second label for a node.

Values A character string.
value provides the value of a node, which is a feature structure or other analytic element.

Values A valid identifier.
type provides a type for a node.

Suggested values include:
initial initial node in a transition network
final final node in a transition network

adjFrom gives the identifiers of the nodes which are adjacent from the current node.
Values A list of identifiers.

adjTo gives the identifiers of the nodes which are adjacent to the current node.
Values A list of identifiers.

adj gives the identifiers of the nodes which are both adjacent to and adjacent from the current
node.
Values A list of identifiers.

inDegree gives the in degree of the node, the number of nodes which are adjacent from the
given node.
Values A non-negative integer.

outDegree gives the out degree of the node, the number of nodes which are adjacent to the
given node.
Values A non-negative integer.

degree gives the degree of the node, the number of arcs with which the node is incident.
Values A non-negative integer.

<arc> encodes an arc, the connection from one node to another in a graph. Attributes include:
label gives a label for an arc.

Values A character string.
label2 gives a second label for an arc.

Values A character string.
from gives the identifier of the node which is adjacent from this arc.

Values The identifier of a node.
to gives the identifier of the node which is adjacent to this arc.

Values The identifier of a node.

Before proceeding, some additional terminology may be helpful. We define apath in a graph as a
sequence of nodes n1, ..., nk such that there is an arc from each ni to ni+1 in the sequence. Acyclic
path, or cycle is a path leading from a particular node back to itself. A graph that contains at least one
cycle is said to becyclic; otherwise it isacyclic. We say, finally, that a graph isconnectedif there is

TEI Consortium 518 March 2002

21.1 Graphs and Digraphs

a path from some node to every other node in the graph; any graph that is not connected is said to be
disconnected.

Here is an example of an undirected, cyclic disconnected graph, in which the nodes are annotated with
three-letter codes for airports, and the arcs connecting the nodes are represented by horizontal and vertical
lines, with 90 degree bends used simply to avoid having to draw diagonal lines.

.---LAX---.
| |

LVG-------PHX---TUS CIB

Airline Connections in Southwestern USA

Next is a markup of the graph, using<arc> elements to encode the arcs.
<graph type='undirected'

id='CUG1'
label='Airline Connections in Southwestern USA'
order='5'
size='4'>

<node label='LAX' id='LAX' degree='2'/>
<node label='LVG' id='LVG' degree='2'/>
<node label='PHX' id='PHX' degree='3'/>
<node label='TUS' id='TUS' degree='1'/>
<node label='CIB' id='CIB' degree='0'/>
<arc from='LAX' to='LVG'/>
<arc from='LAX' to='PHX'/>
<arc from='LVG' to='PHX'/>
<arc from='PHX' to='TUS'/>
</graph>

The label attribute on the<graph> element records a label for the graph; similarly, thelabel attribute on
the <node> elements records the labels of those nodes. Theorder and size attributes on the<graph>
element record the number of nodes and number of arcs in the graph respectively; these values are
optional (since they can be computed from the rest of the graph), but if they are supplied, they must
be consistent with the rest of the encoding. They can thus be used to help check that the graph has been
encoded and transmitted correctly. Thedegree attribute on the<node> elements record the number of
arcs that are incident with that node. It is optional (because redundant), but can be used to help in validity
checking: if a value is given, it must be consistent with the rest of the information in the graph. Finally,
the from andto attributes on the<arc> elements provide pointers to the nodes connected by those arcs.
Since the graph is undirected, no directionality is implied by the use of thefrom andto attributes; the
values of these attributes could be interchanged in each arc without changing the graph.

The adj, adjFrom, and adjTo attributes of the<node> element provide an alternative method of
representing unlabeled arcs, their values being pointers to the nodes which are adjacent to or from that
node. Theadj attribute is to be used for undirected graphs, and theadjFrom andadjTo attributes for
directed graphs. It is a semantic error for the directed adjacency attributes to be used in an undirected
graph, and vice versa. Here is a markup of the preceding graph, using theadj attribute to represent the
arcs.

<graph type='undirected'
id='CUG2'
label='Airline Connections in Southwestern USA'
order='5'
size='4'>

<node label='LAX' id='LAX' degree='2' adj='LVG PHX'/>
<node label='LVG' id='LVG' degree='2' adj='LAX PHX'/>
<node label='PHX' id='PHX' degree='3' adj='LAX LVG TUS'/>
<node label='TUS' id='TUS' degree='1' adj='PHX'/>
<node label='CIB' id='CIB' degree='0'/>
</graph>

Note that each arc is represented twice in this encoding of the graph. For example, the existence of the
arc from LAX to LVG can be inferred from each of the first two<node> elements in the graph. This

March 2002 519 TEI Consortium

21 Graphs, Networks, and Trees

redundancy, however, is not required: it suffices to describe an arc in any one of the three places it can be
described (either adjacent node, or in a separate<arc> element). Here is a less redundant representation
of the same graph.

<graph type='undirected'
id='CUG3'
label='Airline Connections in Southwestern USA'
order='5'
size='4'>

<node label='LAX' id='LAX' degree='2' adj='LVG PHX'/>
<node label='LVG' id='LVG' degree='2' adj='PHX'/>
<node label='PHX' id='PHX' degree='3' adj='TUS'/>
<node label='TUS' id='TUS' degree='1'/>
<node label='CIB' id='CIB' degree='0'/>
</graph>

Although in many cases the<arc> element is redundant (since arcs can be described using the adjacency
attributes of their adjacent nodes), it has nevertheless been included in the tag set, in order to allow the
convenient specification of identifiers, display or rendition information, and labels for each arc (using the
attributesid, rend, andlabel).

Next, let us modify the preceding graph by adding directionality to the arcs. Specifically, we now think
of the arcs as specifying selected routes from one airport to another, as indicated by the direction of the
arrowheads in the following diagram.

+-<-LAX-<-+
| |

LVG--->---PHX--->---TUS CIB
| |
+----<----+

Selected Airline Routes in Southwestern USA

Here is an encoding of this graph, using the<arc> element to designate the arcs.
<graph type='directed'

id='RDG1'
label='Selected Airline Routes in Southwestern USA'
order='5'
size='5'>

<node label='LAX' id='LAX' inDegree='1' outDegree='1'/>
<node label='LVG' id='LVG' inDegree='1' outDegree='1'/>
<node label='PHX' id='PHX' inDegree='2' outDegree='2'/>
<node label='TUS' id='TUS' inDegree='1' outDegree='1'/>
<node label='CIB' id='CIB' inDegree='0' outDegree='0'/>
<arc from='LAX' to='LVG'/>
<arc from='LVG' to='PHX'/>
<arc from='PHX' to='LAX'/>
<arc from='PHX' to='TUS'/>
<arc from='TUS' to='PHX'/>
</graph>

Here is another encoding of the graph, using theadjTo andadjFrom attributes on nodes to designate the
arcs.

<graph type='directed'
id='RDG2'
label='Selected Airline Routes in Southwestern USA'
order='5'
size='5'>

<node label='LAX' id='LAX' inDegree='1'
outDegree='1' adjTo='LVG' adjFrom='PHX'/>

<node label='LVG' id='LVG' inDegree='1'
outDegree='1' adjFrom='LAX' adjTo='PHX'/>

<node label='PHX' id='PHX' inDegree='2'
outDegree='2' adjTo='LAX TUS' adjFrom='LVG TUS'/>

<node label='TUS' id='TUS' inDegree='1'
outDegree='1' adjTo='PHX' adjFrom='PHX'/>

TEI Consortium 520 March 2002

21.1 Graphs and Digraphs

<node label='CIB' id='CIB' inDegree='0' outDegree='0'/>
</graph>

If we wish to label the arcs, say with flight numbers, then<arc> elements must be used to carry thelabel
attribute, as in the following example.

<graph type='directed'
id='RDG1'
label='Selected Airline Routes in Southwestern USA'
order='5'
size='5'>

<node label='LAX' id='LAX'/>
<node label='LVG' id='LVG'/>
<node label='PHX' id='PHX'/>
<node label='TUS' id='TUS'/>
<node label='CIB' id='CIB'/>
<arc from='LAX' to='LVG' label='SW117'/>
<arc from='LVG' to='PHX' label='SW711'/>
<arc from='PHX' to='LAX' label='AA218'/>
<arc from='PHX' to='TUS' label='AW229'/>
<arc from='TUS' to='PHX' label='AW225'/>
</graph>

The formal declarations of the<graph>, <node> and<arc> elements are as follows.
<!-- 21.1: Graphs-->
<!ELEMENT graph %om.RR; (((node, (%m.Incl;)*)+, (arc, (%m.Incl;)*)*)

| ((arc, (%m.Incl;)*)+, (node, (%m.Incl;)*)+)) >
<!ATTLIST graph

%a.global;
type CDATA #IMPLIED
label CDATA #IMPLIED
order CDATA #IMPLIED
size CDATA #IMPLIED
TEIform CDATA 'graph' >

<!ELEMENT node %om.RO; EMPTY>
<!ATTLIST node

%a.global;
label CDATA #IMPLIED
label2 CDATA #IMPLIED
value IDREF #IMPLIED
type CDATA #IMPLIED
adjTo IDREFS #IMPLIED
adjFrom IDREFS #IMPLIED
adj IDREFS #IMPLIED
inDegree CDATA #IMPLIED
outDegree CDATA #IMPLIED
degree CDATA #IMPLIED
TEIform CDATA 'node' >

<!ELEMENT arc %om.RO; EMPTY>
<!ATTLIST arc

%a.global;
label CDATA #IMPLIED
label2 CDATA #IMPLIED
from IDREF #REQUIRED
to IDREF #REQUIRED
TEIform CDATA 'arc' >

<!-- end of 21.1-->

21.1.1 Transition Networks
For encoding transition networks and other kinds of directed graphs in which distinctions among types of
nodes must be made, thetype attribute is provided for<node> elements. In the following example, the
initial andfinal nodes (orstates) of the network are distinguished. It can be understood as accepting the
set of strings obtained by traversing it from its initial node to its final node, and concatenating the labels.

OLD MAN COMES
+->-+ +-->----o---->---+

March 2002 521 TEI Consortium

21 Graphs, Networks, and Trees

| | | |
\ / | |

THE \ / | |
(8) o-->----o-----+ o

| |
| |
| |
+-->----o---->---+

MEN COME

<graph type='transition network'
id='SS8'
label='(8)'
order='5'
size='6'>

<node id='Q0' inDegree='0' outDegree='1' type='initial'/>
<node id='Q1' inDegree='2' outDegree='3'/>
<node id='Q2' inDegree='1' outDegree='1'/>
<node id='Q3' inDegree='1' outDegree='1'/>
<node id='Q4' inDegree='2' outDegree='0' type='final'/>
<arc from='q0' to='q1' label='THE'/>
<arc from='q1' to='q1' label='OLD'/>
<arc from='q1' to='q2' label='MAN'/>
<arc from='q1' to='q3' label='MEN'/>
<arc from='q2' to='q4' label='COMES'/>
<arc from='q3' to='q4' label='COME'/>
</graph>

A finite state transducer has two labels on each arc, and can be thought of as representing a mapping
from one sequence of labels to the other. The following example represents a transducer for translating
the English strings accepted by the network in the preceding example into French. The nodes have been
annotated with numbers, for convenience.

THE MAN COMES
+--->---1------->-----4--->---+
L'	HOMME VIENT
OLD	VIEIL
THE	

(8) 0-->----2 6
| LE / \ |
| / \ |
| / \ |
| | OLD | |
| +-->--+ |
| VIEIL |
| THE MEN COME |
+--->---3------>----5---->----+

LES / \ HOMMES VIENNENT
/ \

/ \
| OLD |
+-->--+

VIEUX

<graph type='transducer'
order='7'
size='10'>

<node id='T0' label='0' inDegree='0' outDegree='3' type='initial'/>
<node id='T1' label='1' inDegree='2' outDegree='1'/>
<node id='T2' label='2' inDegree='2' outDegree='2'/>
<node id='T3' label='3' inDegree='2' outDegree='2'/>
<node id='T4' label='4' inDegree='1' outDegree='1'/>
<node id='T5' label='5' inDegree='1' outDegree='1'/>
<node id='T6' label='6' inDegree='2' outDegree='0' type='final'/>
<arc from='t0' to='t1' label='THE' label2="L'"/>

TEI Consortium 522 March 2002

21.1 Graphs and Digraphs

<arc from='t0' to='t2' label='THE' label2='LE'/>
<arc from='t0' to='t3' label='THE' label2='LES'/>
<arc from='t1' to='t4' label='MAN' label2='HOMME'/>
<arc from='t2' to='t1' label='OLD' label2='VIEIL'/>
<arc from='t2' to='t2' label='OLD' label2='VIEIL'/>
<arc from='t3' to='t3' label='OLD' label2='VIEUX'/>
<arc from='t3' to='t5' label='MEN' label2='HOMMES'/>
<arc from='t4' to='t6' label='COMES' label2='VIENT'/>
<arc from='t5' to='t6' label='COME' label2='VIENNENT'/>
</graph>

21.1.2 Family Trees
The next example provides an encoding a portion of a ‘family tree’, in which nodes are used to represent
individuals, and parents of individuals, and arcs are used to represent common parentage and descent
links. Let us suppose, further, that information about individuals is contained in feature structures, which
are contained in feature-structure libraries elsewhere in the document (see16.3Feature, Feature-Structure
and Feature-Value Libraries). We can use thevalue attribute on<node> elements to point to those feature
structures. Assume that, in some particular representation of the graph, nodes representing females are
framed by circles, nodes representing males are framed by boxes, and nodes representing parents are
framed by diamonds.

Mo Fa
Katherine->--K+A--<-Amberley

|
So | Da

+----<-------+----->----+
| | So |

Bertrand +->-+ Rachel
| |
| Frank

Mo Fa | Fa Mo
Peter->--P+B--<-+->--D+B--<-Dora

| |
So | Da | So

+-<-+ +--<--+-->--+
| | |

Conrad Kate John

<graph type='family tree' order='13' size='12'>
<node id='KATHR' label='Katherine'

value='kr1' inDegree='0' outDegree='1'/>
<node id='AMBER' label='Amberley'

value='ar1' inDegree='0' outDegree='1'/>
<node id='KAR' label='K+A'

inDegree='2' outDegree='3'/>
<node id='BERTR' label='Bertrand'

value='br1' inDegree='1' outDegree='2'/>
<node id='PETER' label='Peter'

value='pr1' inDegree='0' outDegree='1'/>
<node id='DORAR' label='Dora'

value='dr1' inDegree='0' outDegree='1'/>
<node id='PBR' label='P+B'

inDegree='2' outDegree='1'/>
<node id='DBR' label='D+B'

inDegree='2' outDegree='2'/>
<node id='FRANR' label='Frank'

value='fr1' inDegree='1' outDegree='0'/>
<node id='RACHR' label='Rachel'

value='rr1' inDegree='1' outDegree='0'/>
<node id='CONRR' label='Conrad'

value='cr1' inDegree='1' outDegree='0'/>
<node id='KATER' label='Kate'

value='kr2' inDegree='1' outDegree='0'/>
<node id='JOHNR' label='John'

value='jr1' inDegree='1' outDegree='0'/>

March 2002 523 TEI Consortium

21 Graphs, Networks, and Trees

<arc label='Mo' from='KathR' to='KAR'/>
<arc label='Fa' from='AmbeR' to='KAR'/>
<arc label='So' from='KAR' to='BertR'/>
<arc label='So' from='KAR' to='FranR'/>
<arc label='Da' from='KAR' to='RachR'/>
<arc label='Mo' from='PeteR' to='PBR'/>
<arc label='Fa' from='BertR' to='PBR'/>
<arc label='So' from='PBR' to='ConrR'/>
<arc label='Mo' from='DoraR' to='DBR'/>
<arc label='Fa' from='BertR' to='DBR'/>
<arc label='Da' from='DBR' to='KateR'/>
<arc label='So' from='DBR' to='JohnR'/>
</graph>

21.1.3 Historical Interpretation
For our final example, we represent graphically the relationships among various geographic areas
mentioned in a seventeenth-century Scottish document. The document itself is a ‘sasine’, which records
a grant of land from the earl of Argyll to one Donald McNeill, and reads in part as follows (abbreviations
have been expanded silently, and “[...]” marks illegible passages):

Item instrument of Sasine given the said Hector Mcneil confirmed and dated 28 May 1632 [...] at
Edinburgh upon the 15 June 1632

Item ane charter granted by Archibald late earl of Argyle and Donald McNeill of Gallachalzie wh
makes mention that ... the said late Earl yields and grants to the said Donald MacNeill ...

All and hail the two merk land of old extent of Gallachalzie with the pertinents by and in the
lordship of Knapdale within the sherrifdome of Argyll

[description of other lands granted follows ...]

This Charter is dated at Inverary the 15th May 1669

In this example, we are concerned with the land and pertinents (i.e. accompanying sources of revenue)
described as “the two merk land of old extent of Gallachalzie with the pertinents by and in the lordship
of Knapdale within the sherrifdom of Argyll”.

The passage concerns the following pieces of land:

• the Earl of Argyll’s land (i.e. the lands granted by this clause of the sasine)
• two mark of land in Gallachalzie
• the pertinents for this land
• the Lordship of Knapdale
• the sherrifdom of Argyll

We will represent these geographic entities as nodes in a graph. Arcs in the graph will represent the
following relationships among them:

• containment (INCLUDE)
• location within (IN)
• contiguity (BY)
• constituency (PART OF)

Note that these relationships are logically related: “include” and “in”, for example, are inverses of each
other: the Earl of Argyll’s land includes the parcel in Gallachalzie, and the parcel is therefore in the Earl
of Argyll’s land. Given an explicit set of inference rules, an appropriate application could use the graph
we are constructing to infer the logical consequences of the relationships we identify.

Let us assume that feature-structure analyses are available which describe Gallachalzie, Knapdale, and
Argyll. We will link to those feature structures using thevalue attribute on the nodes representing those
places. However, there may be some uncertainty as to which noun phrase is modified by the phrase
“within the sheriffdome of Argyll”: perhaps the entire lands (land and pertinents) are in Argyll, perhaps

TEI Consortium 524 March 2002

21.1 Graphs and Digraphs

just the pertinents are, or perhaps only Knapdale is (together with the portion of the pertinents which
is in Knapdale). We will represent all three of these interpretations in the graph; they are, however,
mutually exclusive, which we represent using theexcl attribute defined in chapter15 Simple Analytic
Mechanisms.152

We represent the graph and its encoding as follows, where the dotted lines in the graph indicate the
mutually exclusive arcs; in the encoding, we use theexclude attribute to indicate those arcs.

Earl of Argyll's land
(land described in sasine)

| | |
,-<-INCLUDE--<--' + '->-INCLUDE---> Pertinents
| : : | |

Gallachalzie IN ...<..IN..<.....: | |
: : | |
: : INCLUDE INCLUDE
: : | |
: : (part of pertinents) (part)
: : | |
: : BY PART OF
: : | |
: : Lordship of Knapdale
: : :
: : ...<.IN..<.......:
: : :

Sherrifdom of Argyll

The graph formalizes the following relationships:

• the Earl of Argyll’s land ‘includes’ (the parcel of land in) Gallachalzie

• the Earl of Argyll’s land ‘includes’ the pertinents of that parcel

• the pertinents are (in part) ‘by’ the Lordship of Knapdale

• the pertinents are (in part) ‘part of’ the Lordship of Knapdale

• the Earl of Argyll’s land, or the pertinents, or the Lordship of Knapdale, is ‘in’ the Sherrifdom
of Argyll

We encode the graph thus:
<graph type='directed' order='7' size='9'>

<node id='EARL' label="Earl of Argyll's land"/>
<node id='GALL' label="Gallachalzie" value='gallfs'/>
<node id='PERT' label="Pertinents"/>
<node id='PER1' label="Pertinents part"/>
<node id='PER2' label="Pertinents part"/>
<node id='KNAP' label="Lordship of Knapdale" value='knapfs'/>
<node id='ARGY' label="Sherrifdome of Argyll" value='argyfs'/>
<arc id='EARLGALL' label="INCLUDE" from='earl' to='gall'/>
<arc id='EARLARGY' label="IN" from='earl' to='argy'

exclude="pertargy knapargy"/>
<arc id='EARLPERT' label="INCLUDE" from='earl' to='pert'/>
<arc id='PERTPER1' label="INCLUDE" from='pert' to='per1'/>
<arc id='PERTPER2' label="INCLUDE" from='pert' to='per2'/>
<arc id='PERTARGY' label="IN" from='pert' to='argy'

exclude="earlargy knapargy"/>
<arc id='PER1KNAP' label="BY" from='per1' to='knap'/>
<arc id='PER2KNAP' label="PART OF" from='per2' to='knap'/>
<arc id='KNAPARGY' label="IN" from='knap' to='argy'

exclude="earlargy pertargy"/>
</graph>

152 That is, the three syntactic interpretations of the clause are mutually exclusive. The notion that the pertinents are in Argyll is
clearly not inconsistent with the notion that both the land in Gallachalzie and the pertinents are in Argyll. The graph given here
describes the possible interpretations of the clause itself, not the sets of inferences derivable from each syntactic interpretation, for
which it would be convenient to use the facilities described in chapter16Feature Structures.

March 2002 525 TEI Consortium

21 Graphs, Networks, and Trees

21.2 Trees
A tree is a connected acyclic graph. That is, it is possible in a tree graph to follow a path from any vertex
to any other vertex, but there are no paths that lead from any vertex to itself. A rooted tree is a directed
graph based on a tree; that is, the arcs in the graph correspond to the arcs of a tree such that there is
exactly one node, called theroot, for which there is a path from that node to all other nodes in the graph.
For our purposes, we may ignore all trees except for rooted trees, and hence we shall use the<tree>
element for rooted trees, and the<root> element for its root. The nodes adjacent to a given node are
called itschildren, and the node adjacent from a given node is called itsparent. Nodes with both a parent
and children are calledinternal nodes, for which we use the<iNode> element. A node with no children
is tagged as a<leaf>. If the children of a node are ordered from left to right, then we say that that node
is ordered. If all the nodes of a tree are ordered, then we say that the tree is anordered tree. If some of
the nodes of a tree are ordered and others are not, then the tree is apartially ordered tree. The ordering of
nodes and trees may be specified by an attribute; we take the default ordering for trees to be ordered, that
roots inherit their ordering from the trees in which they occur, and internal nodes inherit their ordering
from their parents. Finally, we permit a node to be specified as following other nodes, which (when its
parent is ordered) it would be assumed to precede, giving rise to crossing arcs. The elements used for the
encoding of trees have the following descriptions and attributes.
<tree> encodes a tree, which is made up of a root, internal nodes, leaves, and arcs from root to leaves.

Attributes include:
arity gives the maximum number of children of the root and internal nodes of the tree.

Values A nonnegative integer.
ord indicates whether or not the tree is ordered, or if it is partially ordered.

Legal values are:
Y indicates that all of the branching nodes of the tree are ordered.
partial indicates that some of the branching nodes of the tree are ordered

and some are unordered.
N indicates that all of the branching nodes of the tree are unordered.

order gives the order of the tree, i.e., the number of its nodes.
Values A nonnegative integer.

<root> represents the root node of a tree. Attributes include:
label gives a label for a root node.

Values A character string.
value provides the value of the root, which is a feature structure or other analytic element.

Values A valid identifier of a feature structure or other analytic element.
children provides a list of identifiers of the elements which are the children of the root node.

Values A list of valid identifiers.
ord indicates whether or not the root is ordered.

Legal values are:
Y indicates that the children of the root are ordered.
N indicates that the children of the root are unordered.

outDegree gives the out degree of the root, the number of its children.
Values A nonnegative integer.

<iNode> represents an intermediate (or internal) node of a tree. Attributes include:
label gives a label for an intermediate node.

Values A character string.
value provides the value of an intermediate node, which is a feature structure or other analytic

element.
Values A valid identifier of a feature structure or other analytic element.

children provides a list of identifiers of the elements which are the children of the intermedi-
ate node.
Values A list of identifiers.

parent provides the identifier of the element which is the parent of this node.

TEI Consortium 526 March 2002

21.2 Trees

Values The identifier of the parent node.
ord indicates whether or not the internal node is ordered.

Legal values are:
Y indicates that the children of the intermediate node are ordered.
N indicates that the children of the intermediate node are unordered.

follow provides an identifier of the element which this node follows.
Values The identifier of another intermediate node or leaf of the tree.

outDegree gives the out degree of an intermediate node, the number of its children.
Values A nonnegative integer.

<leaf> encodes the leaves (terminal nodes) of a tree. Attributes include:
label gives a label for a leaf.

Values A character string.
value provides the value of a leaf, which is a feature structure or other analytic element.

Values A valid identifier of a feature structure or other analytic element.
parent provides the identifier of parent of a leaf.

Values The identifier of the parent node.
follow provides an identifier of an element which this leaf follows.

Values The identifier of another intermediate node or leaf of the tree.

Here is an example of a tree. It represents the order in which the operators of addition (symbolized
by +), exponentiation (symbolized by**) and division (symbolized by/) are applied in evaluating the
arithmetic formula((a**2)+(b**2))/((a+b)**2) . In drawing the graph, the root is placed on the far
right, and directionality is presumed to be to the left.

a--,
|-**-,

2--' |
|-+--,

b--, | |
|-**-' |

2--' |
|-/

a--, |
|-+--, |

b--' | |
|-**-'
|

2-------'

<tree n='ex1' arity='2' order='12'>
<root label='/' id='DIV1' children='plu1 exp1'/>
<iNode label='+' id='PLU1' parent='div1' children='exp2 exp3'/>
<iNode label='**' id='EXP1' parent='div1' children='plu2 num2.3'/>
<iNode label='**' id='EXP2' parent='plu1' children='vara1 num2.1'/>
<iNode label='**' id='EXP3' parent='plu1' children='varb1 num2.2'/>
<iNode label='+' id='PLU2' parent='exp1' children='vara2 varb2'/>
<leaf label='a' id='VARA1' parent='exp2'/>
<leaf label='2' id='NUM2.1' parent='exp2'/>
<leaf label='b' id='VARB1' parent='exp3'/>
<leaf label='2' id='NUM2.2' parent='exp3'/>
<leaf label='a' id='VARA2' parent='plu2'/>
<leaf label='b' id='VARB2' parent='plu2'/>
<leaf label='2' id='NUM2.3' parent='exp1'/>
</tree>

In this encoding, thearity attribute represents thearity of the tree, which is the greatest value of the
outDegree attribute for any of the nodes in the tree. If, as in this case,arity=’2’, we say that the tree is a
binary tree.

Since the left-to-right (or top-to-bottom!) order of the children of the two+ nodes does not affect the
arithmetic result in this case, we could represent in this tree all of the arithmetically equivalent formulas
involving its leaves, by specifying the attributeord=”N”on those two<iNode> elements, the attribute

March 2002 527 TEI Consortium

21 Graphs, Networks, and Trees

ord=”Y” on the<root> and other<iNode> elements, and the attributeord=”partial” on the<tree>
element, as follows.

<tree n='ex2' ord='partial' arity='2' order='13'>
<root label='/' id='DIV1' ord='Y' children='plu1 exp1'/>
<iNode label='+' id='PLU1' ord='N' parent='div1' children='exp2 exp3'/>
<iNode label='**' id='EXP1' ord='Y' parent='div1' children='plu2 num2.3'/>
<iNode label='**' id='EXP2' ord='Y' parent='plu1' children='vara1 num2.1'/>
<iNode label='**' id='EXP3' ord='Y' parent='plu1' children='varb1 num2.2'/>
<iNode label='+' id='PLU2' ord='N' parent='exp1' children='vara2 varb2'/>
<leaf label='a' id='VARA1' parent='exp2'/>
<leaf label='2' id='NUM2.1' parent='exp2'/>
<leaf label='b' id='VARB1' parent='exp3'/>
<leaf label='2' id='NUM2.2' parent='exp3'/>
<leaf label='a' id='VARA2' parent='plu2'/>
<leaf label='b' id='VARB2' parent='plu2'/>
<leaf label='2' id='NUM2.3' parent='exp1'/>
</tree>

This encoding represents all of the following:

• ((a**2)+(b**2))/((a+b)**2)

• ((b**2)+(a**2))/((a+b)**2)

• ((a**2)+(b**2))/((b+a)**2)

• ((b**2)+(a**2))/((a+b)**2)

Linguistic phrase structure is very commonly represented by trees. Here is an example of phrase structure
represented by an ordered tree with its root at the top, and a possible encoding.

,---PP---,
| |
P ,--NP--,
| | |

with Art N
| |

the periscope

<tree n='ex3' arity='2' order='8'>
<root id='PP1' children='P1 NP1' label='PP'/>
<iNode id='P1' parent='PP1' children='with1' label='P'/>
<leaf id='WITH1' parent='P1' label='with'/>
<iNode id='NP1' parent='PP1' children='the1 peri1' label='NP'/>
<iNode id='ART1' parent='NP1' children='the1' label='Art'/>
<leaf id='THE1' parent='Art1' label='the'/>
<iNode id='N1' parent='NP1' children='peri1' label='N'/>
<leaf id='PERI1' parent='N1' label='periscope'/>
</tree>

Finally, here is an example of an ordered tree, in which a particular node which ordinarily would precede
another is specified as following it. In the drawing, thexxx symbol indicates that the arc from VB to PT
crosses the arc from VP to PN.

,--VP--,
| |

,--VB-----xxx--,
| | |
VB PN PT
| | |

look them up

<tree n='ex4' arity='2' order='8'>
<leaf label='look' id='LOOK1' parent='VB2'/>
<leaf label='them' id='THEM1' parent='PN1'/>
<leaf label='up' id='UP1' parent='PT1'/>
<iNode label='VB' id='VB2' parent='VB1' children='look1'/>
<iNode label='PN' id='PN1' parent='VP1' children='them1' />
<iNode label='PT' id='PT1' parent='VB1' children='up1' follow='PN1'/>
<iNode label='VB' id='VB1' parent='VP1' children='VB2 PT1'/>

TEI Consortium 528 March 2002

21.2 Trees

<root label='VP' id='VP1' children='VB1 PN1'/>
</tree>

The formal declarations of the<tree>, <root>, <iNode> and<leaf> elements are as follows.
<!-- 21.2: Trees (basic method)-->
<!ELEMENT tree %om.RR; ((leaf | iNode)*, root, (leaf | iNode)*)>
<!ATTLIST tree

%a.global;
label CDATA #IMPLIED
arity CDATA #IMPLIED
ord (Y | N | partial) "Y"
order CDATA #IMPLIED
TEIform CDATA 'tree' >

<!ELEMENT root %om.RO; EMPTY>
<!ATTLIST root

%a.global;
label CDATA #IMPLIED
value IDREF #IMPLIED
children IDREFS #IMPLIED
ord (Y | N) #IMPLIED
outDegree CDATA #IMPLIED
TEIform CDATA 'root' >

<!ELEMENT iNode %om.RO; EMPTY>
<!ATTLIST iNode

%a.global;
label CDATA #IMPLIED
value IDREF #IMPLIED
children IDREFS #REQUIRED
parent IDREF #IMPLIED
ord (Y | N) #IMPLIED
follow IDREF #IMPLIED
outDegree CDATA #IMPLIED
TEIform CDATA 'iNode' >

<!ELEMENT leaf %om.RO; EMPTY>
<!ATTLIST leaf

%a.global;
label CDATA #IMPLIED
value IDREF #IMPLIED
parent IDREF #IMPLIED
follow IDREF #IMPLIED
TEIform CDATA 'leaf' >

<!-- end of 21.2-->

21.3 Another Tree Notation
In this section, we present an alternative to the method of representing the structure of ordered rooted
trees that is given in section21.2Trees, which is based on the observation that any node of such a tree
can be thought of as the root of the subtree that it dominates. Thus subtrees can be thought of as the same
type as the trees they are embedded in, hence the designation<eTree>, for embedding tree. Whereas
in a <tree>, the relationship among the parts is indicated by thechildren attribute, and by the names of
the elements<root>, <iNode> and<leaf>, the relationship among the parts of an<eTree> is indicated
simply by the arrangement of their content. However, we have chosen to enable encoders to distinguish
the terminal elements of an<eTree> by means of the empty<eLeaf> element, though its use is not
required; the<eTree> element can also be used to identify the terminal nodes of<eTree> elements. We
also provide a<triangle> element, which can be thought of as anunderspecified<eTree>, that is an
<eTree> in which certain information has been left out. In addition, we provide a<forest> element,
which consists of one or more<tree>, <eTree> or <triangle> elements, and a<forestGrp> element,
which consists of one or more<forest> elements. The elements used for the encoding of embedding
trees and the units containing them have the following descriptions and attributes.
<eTree> provides an alternative to<tree> element for representing ordered rooted tree structures.

Attributes include:
label gives a label for an embedding tree.

March 2002 529 TEI Consortium

21 Graphs, Networks, and Trees

Values A character string.
value provides the value of an embedding tree, which is a feature structure or other analytic

element.
Values A valid identifier of a feature structure or other analytic element.

<triangle> provides for an underspecified<eTree>, that is, an<eTree> with information left out.
Attributes include:
label gives a label for an underspecified embedding tree.

Values A character string.
value provides the value of a triangle, which is the identifier of a feature structure or other

analytic element.
Values A valid identifier of a feature structure or other analytic element.

<eLeaf> provides explicitly for a leaf of an embedding tree, which may also be encoded with the
<eTree> element. Attributes include:
label gives a label for a leaf of an embedding tree.

Values A character string.
value provides the value of an embedding leaf, which is a feature structure or other analytic

element.
Values A valid identifier of a feature structure or other analytic element.

<forest> provides for groups of rooted trees. Attributes include:
type identifies the type of the forest.

Values A character string.
<forestGrp> provides for groups of forests. Attributes include:

type identifies the type of the forest group.
Values A character string.

Like the<root>, <iNode> and<leaf> of a <tree>, the<eTree>, <triangle> and<eLeaf> elements
may also havelabel andvalue attributes.

To illustrate the use of the<eTree> and<eLeaf> elements, here is an encoding of the second example
in section21.2Trees, repeated here for convenience.

,---PP---,
| |
P ,--NP--,
| | |

with Art N
| |

the periscope

<eTree n='ex1' label='PP'>
<eTree label='P'><eLeaf label='with'/></eTree>
<eTree label='NP'>

<eTree label='Art'><eLeaf label='the'/></eTree>
<eTree label='N'><eLeaf label='periscope'/></eTree>
</eTree>

</eTree>

Next, we provide an encoding, using the<triangle> element, in which the internal structure of the
<eTree> labeledNP is omitted.

,---PP----,
| |
P NP
| / \

with / \
/______\

the periscope

<eTree n='ex2' label='PP'>
<eTree label='P'><eLeaf label='with'></eTree>
<triangle label='NP'><eLeaf label='the periscope'></triangle>
</eTree>

TEI Consortium 530 March 2002

21.3 Another Tree Notation

Ambiguity involving alternative tree structures associated with the same terminal sequence can be
encoded relatively conveniently using a combination of theexclude and copyOf attributes described
in sections14.8 Alternationand14.6 Identical Elements and Virtual Copies. In the simplest case, an
<eTree> may be part of the content of exactly one of two different<eTree> elements. To mark it up,
the embedded<eTree> may be fully specified within one of the embedding<eTree> elements to which
it may belong, and a virtual copy, specified by thecopyOf attribute, may appear on the other. In addition,
each of the embedded elements in question is specified as excluding the other, using theexclude attribute.
To illustrate, consider the English phrase ‘see the vessel with the periscope’, which may be considered
to be structurally ambiguous, depending on whether the phrase ‘with the periscope’ is a modifier of the
phrase ‘the vessel’ or a modifier of the phrase ‘see the vessel’. This ambiguity is indicated in the sketch of
the ambiguous tree by means of the dotted-line arcs. The markup using thecopyOf andexclude attributes
follows the sketch.

,--------VP....................
| | :
V ,----NP....... ,--PP--,
| | | : | |

see Art N ,--PP--, P ,-NP-,
| | | | | | |

the vessel P ,-NP-, with Art N
| | | | |

with Art N the periscope
| |

the periscope

<eTree n='ex3' label='VP'>
<eTree label='V'><eLeaf label='see'/></eTree>
<eTree label='NP'>

<eTree label='Art'><eLeaf label='the'/></eTree>
<eTree label='N'><eLeaf label='vessel'/></eTree>
<eTree id='PPA' exclude='ppb' label='PP'>

<eTree label='P'><eLeaf label='with'/></eTree>
<eTree label='NP'>

<eTree label='Art'><eLeaf label='the'/></eTree>
<eTree label='N'><eLeaf label='periscope'/></eTree>
</eTree>

</eTree>
</eTree>

<eTree id='PPB' copyOf='ppa' exclude='ppa' label='PP'></eTree>
</eTree>

To indicate that one of the alternatives is selected, one may specify theselect attribute on the highest
<eTree> as eitherselect=”ppa”or select=”ppb”; see section14.8Alternation.

Depending on the grammar one uses to associate structures with examples like ‘see the man with the
periscope’, the representations may be more complicated than this. For example, adopting a version
of the X-bar theory of phrase structure originated by Jackendoff,153 the attachment of a modifier may
require the creation of an intermediate node which is not required when the attachment is not made, as
shown in the following diagram. A possible encoding of this ambiguous structure immediately follows
the diagram.

..............VP......................
: :

,--V'--, ,-----V'------,
| | | |
V ,-NP--, ,--V'--, ,--PP--,
| | | | | | |

see Spec ,-N'--, V ,-NP-, P ,-NP-,
| | | | | | | | |

the N' ,-PP---, see Spec N' with Spec N'
| | | | | | |
N P ,-NP-, the N the N

153 R. Jackendoff,X-Bar Syntax, 1977

March 2002 531 TEI Consortium

21 Graphs, Networks, and Trees

| | | | | |
vessel with Spec N' vessel periscope

| |
the N

|
periscope

<eTree n='ex4' label="VP">
<eTree id='VBARA' exclude='VBARB' label="V'">

<eTree id='VA' label="V"><eLeaf label="see"/></eTree>
<eTree label="NP">

<eTree id='SPEC1A' label="Spec"><eLeaf label="the"/></eTree>
<eTree label="N'">

<eTree id='NBAR2A' label="N'">
<eTree label="N"><eLeaf label="vessel"/></eTree>
</eTree>

<eTree id='PPA' label="PP">
<eTree label="P"><eLeaf label="with"/></eTree>
<eTree label="NP">

<eTree label="Spec"><eLeaf label="the"/></eTree>
<eTree label="N'">

<eTree label="N"><eLeaf label="periscope"/></eTree>
</eTree>

</eTree> </eTree> </eTree> </eTree> </eTree>
<eTree id='VBARB' exclude='VBARA' label="V'">

<eTree label="V'">
<eTree id='VB' copyOf='VA' label="V"></eTree>
<eTree label="NP">

<eTree id='SPEC1B' copyOf='SPEC1A' label="Spec"></eTree>
<eTree id='NBAR2B' copyOf='NBAR2A' label="N'"></eTree>
</eTree>

</eTree>
<eTree id='PPB' copyOf='PPA' label="PP"></eTree>
</eTree>

</eTree>

A derivationin a generative grammar is often thought of as a set of trees. To encode such a derivation,
one may use the<forest> element, in which the trees may be marked up using the<tree>, the<eTree>
or the<triangle> element. Thetype attribute may be used to specify what kind of derivation it is. Here
is an example of a two-tree forest, involving application of the ‘wh-movement’ transformation in the
derivation of ‘what you do’ (as in ‘this is what you do’) from the underlying ‘you do what’.154

,--S'--, ,--S'--,
| | | |

COMP ,--S--, COMP ,--S--,
| | | | | |
e NP ,-VP-, NP NP ,-VP-,

| | | | | | |
you V NP what you V NP

| | | |
do what do t

<forest n='ex5' type='syntactic derivation'>
<eTree n='Stage 1' id='S1SBAR' label="S'">

<eTree id='S1COMP' label="COMP"><eLeaf id='S1E' label="e"/></eTree>
<eTree id='S1S' label="S">

<eTree id='S1NP1' label="NP"><eLeaf label="you"/></eTree>
<eTree id='S1VP' label="VP">

<eTree id='S1V' label="V"><eLeaf label="do"/></eTree>
<eTree id='S1NP2' label="NP">

<eLeaf id='S1WH' label="what"/>
</eTree>

</eTree>
</eTree>

154 The symbolse andt denote special theoretical constructs (empty categoryandtrace respectively), which need not concern us
here.

TEI Consortium 532 March 2002

21.3 Another Tree Notation

</eTree>
<eTree n='Stage 2' id='S2SBAR' corresp='s1sbar' label="S'">

<eTree id='S2COMP' corresp='s1comp' label="COMP">
<eTree copyOf='s1np2' corresp='s1e' label="NP"></eTree>
</eTree>

<eTree id='S2S' corresp='s1s' label="S">
<eTree id='S2NP1' copyOf='s1np1' label="NP"></eTree>
<eTree id='S2VP' corresp='s1vp' label="VP">

<eTree id='S2V' copyOf='s1v' label="V"></eTree>
<eTree id='S2NP2' corresp='s1np2' label="NP">

<eLeaf corresp='s1wh' label="t"/>
</eTree>

</eTree>
</eTree>

</eTree>
</forest>

In this markup, we have usedcopyOf attributes to provide virtual copies of elements in the tree
representing the second stage of the derivation that also occur in the first stage, and thecorresp attribute
(see section14.4 Correspondence and Alignment) to link those elements in the second stage with
corresponding elements in the first stage that are not copies of them.

If a group of forests (e.g. a full grammatical derivation including syntactic, semantic and phonological
subderivations) is to be articulated, the grouping element<forestGrp> may be used.

The formal declarations of the<eTree>, <triangle>, <eLeaf>, <forest> and<forestGrp> elements
are as follows.

<!-- 21.3: Trees (alternate method)-->
<!ELEMENT eTree %om.RR; ((eTree | triangle | eLeaf)*)>
<!ATTLIST eTree

%a.global;
label CDATA #IMPLIED
value IDREF #IMPLIED
TEIform CDATA 'eTree' >

<!ELEMENT triangle %om.RR; ((eTree | triangle | eLeaf)*)>
<!ATTLIST triangle

%a.global;
label CDATA #IMPLIED
value IDREF #IMPLIED
TEIform CDATA 'triangle' >

<!ELEMENT eLeaf %om.RO; EMPTY>
<!ATTLIST eLeaf

%a.global;
label CDATA #IMPLIED
value IDREF #IMPLIED
TEIform CDATA 'eLeaf' >

<!ELEMENT forest %om.RR; ((tree | eTree | triangle)+)>
<!ATTLIST forest

%a.global;
type CDATA #IMPLIED
TEIform CDATA 'forest' >

<!ELEMENT forestGrp %om.RR; ((forest)+)>
<!ATTLIST forestGrp

%a.global;
type CDATA #IMPLIED
TEIform CDATA 'forestGrp' >

<!-- end of 21.3-->

March 2002 533 TEI Consortium

21 Graphs, Networks, and Trees

TEI Consortium 534 March 2002

