
1.3 Historical Background

2 A Gentle Introduction to XML
As originally published in previous editions of the Guidelines, this chapter provided a gentle introduction to ‘just enough’
SGML for anyone to understand how the TEI used that standard. Since then, the Gentle Guide seems to have taken on a life
of its own independent of the Guidelines, having been widely distributed (and flatteringly imitated) on the web. In revising
it for the present draft, the editors have therefore felt free to reduce considerably its discussion of SGML-specific matters, in
favour of a simple presentation of how the TEI uses XML.

The encoding scheme defined by these Guidelines may be formulated either as an application of the ISO
Standard Generalized Markup Language (SGML)4 or of the more recently developed W3C Extensible
Markup Language (XML)5. Both SGML and XML are widely-used for the definition of device-
independent, system-independent methods of storing and processing texts in electronic form; XML being
in fact a simplification or derivation of SGML. In the present chapter we introduce informally the basic
concepts underlying such markup languages and attempt to explain to the reader encountering them
for the first time how they are actually used in the TEI scheme. Except where the two are explicitly
distinguished, references to XML in what follows may be understood to apply equally well to the TEI
usage of SGML. For a more technical account of TEI practice see chapter28 Conformance; for a more
technical description of the subset of SGML used by the TEI encoding scheme, see chapter39 Formal
Grammar for the TEI-Interchange-Format Subset of SGML.

XML is an extensible markup language used for the description of marked-up electronic text. More
exactly, XML is ametalanguage, that is, a means of formally describing a language, in this case, a
markuplanguage. Historically, the wordmarkuphas been used to describe annotation or other marks
within a text intended to instruct a compositor or typist how a particular passage should be printed or laid
out. Examples include wavy underlining to indicate boldface, special symbols for passages to be omitted
or printed in a particular font and so forth. As the formatting and printing of texts was automated, the
term was extended to cover all sorts of special codes inserted into electronic texts to govern formatting,
printing, or other processing.

Generalizing from that sense, we define markup, or (synonymously)encoding, as any means of making
explicit an interpretation of a text. Of course, all printed texts are implicitly encoded (or marked up)
in this sense: punctuation marks, use of capitalization, disposition of letters around the page, even the
spaces between words, might be regarded as a kind of markup, the function of which is to help the human
reader determine where one word ends and another begins, or how to identify gross structural features
such as headings or simple syntactic units such as dependent clauses or sentences. Encoding a text for
computer processing is in principle, like transcribing a manuscript fromscriptio continua,6 a process of
making explicit what is conjectural or implicit, a process of directing the user as to how the content of
the text should be (or has been) interpreted.

By markup languagewe mean a set of markup conventions used together for encoding texts. A
markup language must specify what markup is allowed, what markup is required, how markup is to
be distinguished from text, and what the markup means. XML provides the means for doing the first
three; documentation such as these Guidelines is required for the last.

The present chapter attempts to give an informal introduction to those parts of XML of which a proper
understanding is necessary to make best use of these Guidelines. The interested reader should also consult
one or more of the dozens of excellent introductory text books or web sites now available on the subject.

2.1 What’s special about XML?
Three characteristics of XML seem to us to make it unlike other other markup languages:

• its emphasis on descriptive rather than procedural markup;

• its document typeconcept;

4 International Organization for Standardization,ISO 8879: Information processing – Text and office systems – Standard
Generalized Markup Language (SGML),([Geneva]: ISO, 1986).
5 World Wide Web Consortium:Extensible Markup Language (XML) 1.0, available fromhttp://www.w3.org/TR/REC-xml
6 In the “continuous writing” characteristic of manuscripts from the early classical period, words are written continuously with no
intervening spaces or punctuation.

March 2002 13 TEI Consortium

2 A Gentle Introduction to XML

• its independence of any one hardware or software system.

These three aspects are discussed briefly below, and then in more depth in sections2.3 XML structures
and2.7Entities.

The markup language with which XML is most frequently compared, however, is HTML, the language in
which web pages had always been written until XML began to replace it. Compared with HTML, XML
has some other important characteristics:

• XML is extensible: it does not contain a fixed set of tags

• XML documents must be well-formed according to a defined syntax, and may be formally
validated

• XML focuses on the meaning of data, not its presentation

2.1.1 Descriptive markup
In a descriptive markup system, the markup codes used do little more than categorize parts of a document.
Markup codes such as<para> or \end{list} simply identify a portion of a document and assert of it
that “the following item is a paragraph,” or “this is the end of the most recently begun list,” etc. By
contrast, a procedural markup system defines what processing is to be carried out at particular points
in a document: “call procedure PARA with parameters 1, b and x here” or “move the left margin 2
quads left, move the right margin 2 quads right, skip down one line, and go to the new left margin,”
etc. In XML, the instructions needed to process a document for some particular purpose (for example,
to format it) are sharply distinguished from the descriptive markup which occurs within the document.
They are collected outside the document in separate procedures or programs, and are usually expressed
in a distinct document called astylesheet, though it may do much more than simply define the rendition
or visual appearance of a document.7

With descriptive instead of procedural markup the same document can readily be processed in many
different ways, using only those parts of it which are considered relevant. For example, a content
analysis program might disregard entirely the footnotes embedded in an annotated text, while a formatting
program might extract and collect them all together for printing at the end of each chapter. Different kinds
of processing can be carried out with the same part of a file. For example, one program might extract
names of persons and places from a document to create an index or database, while another, operating
on the same text, but using a different stylesheet, might print names of persons and places in a distinctive
typeface.

2.1.2 Types of document
A second key aspect of XML is its notion of adocument type: documents are regarded as having types,
just as other objects processed by computers do. The type of a document is formally defined by its
constituent parts and their structure. The definition of a ‘report’, for example, might be that it consisted
of a ‘title’ and possibly an ‘author’, followed by an ‘abstract’ and a sequence of one or more ‘paragraphs’.
Anything lacking a title, according to this formal definition, would not formally be a report, and neither
would a sequence of paragraphs followed by an abstract, whatever other report-like characteristics these
might have for the human reader.

If documents are of known types, a special purpose program (called aparser), once provided with an
unambiguous definition of a document’s type, can check that any document claiming to be of a that type
does in fact conform to the specification. A parser can check that all and only elements specified for a
particular document type are present, that they are combined in appropriate ways, correctly ordered and
so forth. More significantly, different documents of the same type can be processed in a uniform way.
Programs can be written which take advantage of the knowledge encapsulated in the document structure
information, and which can thus behave in a more ‘intelligent’ fashion.

7 We do not here discuss in any detail the ways that a style sheet can be used or defined, nor do we discuss the increasingly
popular W3C Stylesheet Languages. Seehttp://www.w3.org/TR/xsl for the Extensible Stylesheet Language (XSL), and
http://www.w3.org/TR/xslt for the XSL Transformations (XSLT) Language.

TEI Consortium 14 March 2002

2.1 What’s special about XML?

2.1.3 Data independence
A basic design goal of XML is to ensure that documents encoded according to its provisions can move
from one hardware and software environment to another without loss of information. The two features
discussed so far both address this requirement at an abstract level; the third feature addresses it at the
level of the strings of data characters of which documents are composed. All XML documents, whatever
language or writing system they employ, use the same underlying character encoding (that is, the same
method of representing the graphic forms making up a particular writing system as binary data).8 This
encoding is defined by an international standard,9 which is implemented by a universal character set
maintained by an industry group called the Unicode Consortium, and known as Unicode;10 this provides
a standardised way of representing any of the thousands of discrete symbols making up the world’s
writing systems, past and present.

For technical and historical reasons which need not concern us, it is often necessary to translate texts
encoded as Unicode into some smaller or less general encoding scheme. XML uses a general purpose
string substitutionmechanism for this purpose, inherited from SGML (which predates the availability of
Unicode). In simple terms, this mechanism allows for the indirect representation of arbitrary parts of a
document (be they single characters, character strings, or whole files) within it. One obvious application
for this mechanism is to ensure consistency of nomenclature; another, more significant one, is to counter
the notorious inability of different computer systems to understand each other’s character sets, or of any
one system to provide all the graphic characters needed for a particular application. The strings defined by
this string-substitution mechanism are calledentitiesand they are discussed below in section2.7Entities.

2.2 Textual structure
A text is not an undifferentiated sequence of words, much less of bytes. For different purposes, it may
be divided into many different units, of different types or sizes. A prose text such as this one might be
divided into sections, chapters, paragraphs, and sentences. A verse text might be divided into cantos,
stanzas, and lines. Once printed, sequences of prose and verse might be divided into volumes, gatherings,
and pages.

Structural units of this kind are most often used to identify specific locations or reference points within a
text (“the third sentence of the second paragraph in chapter ten”; “canto 10, line 1234”; “page 412,” etc.)
but they may also be used to subdivide a text into meaningful fragments for analytic purposes (“is the
average sentence length of section 2 different from that of section 5?” “how many paragraphs separate
each occurrence of the word ‘nature’?” “how many pages?”). Other structural units are more clearly
analytic, in that they characterize a section of a text. A dramatic text might regard each speech by a
different character as a unit of one kind, and stage directions or pieces of action as units of another kind.
Such an analysis is less useful for locating parts of the text (“the 93rd speech by Horatio in Act 2”) than
for facilitating comparisons between the words used by one character and those of another, or those used
by the same character at different points of the play.

In a prose text one might similarly wish to regard as units of different types passages in direct or indirect
speech, passages employing different stylistic registers (narrative, polemic, commentary, argument, etc.),
passages of different authorship and so forth. And for certain types of analysis (most notably textual
criticism) the physical appearance of one particular printed or manuscript source may be of importance:
paradoxically, one may wish to use descriptive markup to describe presentational features such as
typeface, line breaks, use of whitespace and so forth.

These textual structures overlap with each other in complex and unpredictable ways. Particularly when
dealing with texts as instantiated by paper technology, the reader needs to be aware of both the physical
organization of the book and the logical structure of the work it contains. Many great works (Sterne’s
Tristram Shandyfor example) cannot be fully appreciated without an awareness of the interplay between
narrative units (such as chapters or paragraphs) and page divisions. For many types of research, it is the

8 SeeExtensible Markup Language (XML) 1.0, Section 2.2 Characters.
9 ISO/IEC 10646-1993Information Technology — Universal Multiple-Octed Coded Character Set(UCS)
10 Seehttp://www.unicode.org/

March 2002 15 TEI Consortium

2 A Gentle Introduction to XML

interplay between different levels of analysis which is crucial: the extent to which syntactic structure
and narrative structure mesh, or fail to mesh, for example, or the extent to which phonological structures
reflect morphology.

2.3 XML structures
This section describes the simple and consistent mechanism for the markup or identification of textual
structure provided by XML. It also describes the methods XML provides for the expression of rules
defining how units of textual structure can meaningfully be combined in a text.

2.3.1 Elements
The technical term used in XML for a textual unit, viewed as a structural component, iselement. Different
types of elements are given different names, but XML provides no way of expressing the meaning of a
particular type of element, other than its relationship to other element types. That is, all one can say about
an element called (for instance)<blort> is that instances of it may (or may not) occur within elements
of type <farble>, and that it may (or may not) be decomposed into elements of type<blortette>.
It should be stressed that XML is entirely unconcerned with the semantics of textual elements: these
are application dependent. It is up to the creators of XML vocabularies (such as these Guidelines) to
choose intelligible names for the elements they identify and to define their proper use in text markup.
That is the chief purpose of documents such as the TEI Guidelines. From the need to choose element
names indicative of function comes the technical term for the name of an element type, which isgeneric
identifier, or GI.

Within a marked up text (adocument instance), each element must be explicitly marked or tagged in
some way. This is done by inserting a tag at the beginning of the element (astart-tag) and another at
its end (anend-tag).11 The start- and end-tag pair are used to bracket off the element occurrences within
the running text, in rather the same way as different types of parentheses or quotation marks are used in
conventional punctuation. For example, a quotation element in a text might be tagged as follows:

... Rosalind's remarks <quote>This is the silliest stuff
that ere I heard of!</quote> clearly indicate ...

As this example shows, a start-tag takes the form<quote>, where the opening angle bracket indicates
the start of the start-tag, “quote” is the generic identifier of the element which is being delimited, and
the closing angle bracket indicates the end of a tag. An end-tag takes an identical form, except that the
opening angle bracket is followed by a solidus (slash) character, so that the corresponding end-tag is
</quote>.12

2.3.2 Content models: an example
An element may beempty, that is, it may have no content at all, or it may contain just a sequence
of characters with no other elements. More usually, however, elements of one type will beembedded
(contained entirely) within elements of a different type.

To illustrate this, we will consider a very simple structural model. Let us assume that we wish to identify
within an anthology only poems, their titles, and the stanzas and lines of which they are composed. In
XML terms, ourdocument typeis theanthology, and it consists of a series ofpoems. Each poem has
embedded within it one element, atitle, and several occurrences of another, astanza, each stanza having
embedded within it a number ofline elements. Fully marked up, a text conforming to this model might
appear as follows:13

11 In SGML (but not in XML) the name and the content model may be separated by an additional part of the declaration which
specifies ‘omission rules’ for the element concerned. These rules state whether or not start- and end-tags must be present for every
occurrence of the element concerned: as noted above, such tag omission is not permitted in XML, and is not permitted in the TEI
Interchange format.
12 Because the opening angle bracket has this special function in an XML document, special steps must be taken to use that
character for other purposes (for example, as the mathematical less-than operator); see further2.7.2Entity references; in SGML
(but not XML) different characters may be defined for use as any of the delimiting characters (the angle brackets, exclamation mark
and solidus).
13 The example is taken from William Blake’sSongs of innocence and experience(1794). The markup is designed for illustrative
purposes and is not TEI-conformant.

TEI Consortium 16 March 2002

2.3 XML structures

<anthology>
<poem><title>The SICK ROSE</title>

<stanza>
<line>O Rose thou art sick.</line>
<line>The invisible worm,</line>
<line>That flies in the night</line>
<line>In the howling storm:</line>

</stanza>
<stanza>

<line>Has found out thy bed</line>
<line>Of crimson joy:</line>
<line>And his dark secret love</line>
<line>Does thy life destroy.</line>

</stanza>
</poem>

<!-- more poems go here -->
</anthology>

It should be stressed that this example doesnot use the same names as are proposed for corresponding
elements elsewhere in these Guidelines: the above isnot a valid TEI document. It will however serve as
an introduction to the basic notions of XML. Whitespace and line breaks have been added to the example
for the sake of visual clarity only; they have no particular significance in the XML encoding itself. Also,
the line

<!-- more poems go here -->

is an XML commentand is not treated as part of the text.

As it stands, the above example is what is known as awell-formedXML document: to achieve this status,
an XML document must obey the following simple rules:

• there should be a single element (start- and end- tag pair) which encloses the whole document:
this is known as theroot element(<anthology> in our case);

• each element should be completely contained by the root element, or by an element which is
so contained; elements may not partially overlap one another;

• the tags marking the start and end of each element must always be present.14

An XML document which is well-formed can be processed in a number of useful ways. A simple
indexing program could extract only the relevant text elements in order to make a list of titles, first lines,
or words used in the poem text; a simple formatting program could insert blank lines between stanzas,
perhaps indenting the first line of each, or inserting a stanza number. Different parts of each poem could
be typeset in different ways. A more ambitious analytic program could relate the use of punctuation marks
to stanzaic and metrical divisions.15 Scholars wishing to see the implications of changing the stanza or
line divisions chosen by the editor of this poem can do so simply by altering the position of the tags. And
of course, the text as presented above can be transported from one computer to another and processed by
any program (or person) capable of making sense of the tags embedded within it with no need for the sort
of transformations and translations needed to move word processor files around.

However, well-formedness alone is not enough for the full range of what might be useful in marking up a
document. It might well be useful if, in the process of preparing our digital anthology, a computer system
could check some basic rules about how stanzas, lines, and titles can sensibly co-occur in a document.
It would be even more useful if the system could check that stanzas are always labelled<stanza> and
not occasionally<canto> or <Stanza>. An XML document in which such rules have been checked
is technically known as avalid document, and the ability to perform such validation is one of the key
advantages of using XML. To carry this out, some way of formally stating the criteria for successful

14 This is not strictly true for empty elements, for which start- and end-tags can be combined, as further discussed below.
15 Note that this simple example has not addressed the problem of marking elements such as sentences explicitly; the implications
of this are discussed below in section2.5Complicating the issue.

March 2002 17 TEI Consortium

2 A Gentle Introduction to XML

validation is necessary: in XML this formal statement may be provided by an additional document known
as adocument type declaration(DTD) or by anXML schema.16

2.4 Validating a document’s structure
Rules such as those informally stated above are the first stage in the creation of a formal specification for
the structure of an XML document, ordocument type declaration, usually abbreviated toDTD. In creating
a DTD, the document designer may be as lax or as restrictive as the occasion warrants. A balance must
be struck between the convenience of following simple rules and the complexity of handling real texts.
This is particularly the case when the rules being defined relate to texts which already exist: the designer
may have only the haziest of notions as to an ancient text’s original purpose or meaning and hence find
it very difficult to specify consistent rules about its structure. On the other hand, where a new text is
being prepared to an exact specification, for example for entry into a textual database of some kind, the
more precisely stated the rules, the better they can be enforced. Even in the case where an existing text
is being marked up, it may be beneficial to define a restrictive set of rules relating to one particular view
or hypothesis about the text – if only as a means of testing the usefulness of that view or hypothesis. It
is important to remember that every document type declaration results from an interpretation of a text.
There is no single DTD which encompasses any kind of absolute truth about a text, although it may be
convenient to privilege some DTDs above others for particular types of analysis.

XML is widely used in environments where uniformity of document structure is a major desideratum.
In the production of technical documentation, for example, it is of major importance that sections and
subsections should be properly nested, that cross references should be properly resolved and so forth.
In such situations, documents are seen as raw material to match against pre-defined sets of rules. As
discussed above, however, the use of simple rules can also greatly simplify the task of tagging accurately
elements of less rigidly constrained texts. By making these rules explicit, the scholar reduces his or her
own burdens in marking up and verifying the electronic text, while also being forced to make explicit an
interpretation of the structure and significant particularities of the text being encoded.

2.4.1 An example DTD
A DTD is expressed as a set of declarative statements, using a special purpose syntax which we introduce
informally below. For our simple model of a poem, the following declarations would be appropriate:

<!ELEMENT anthology (poem+)>
<!ELEMENT poem (title?, stanza+)>
<!ELEMENT title (#PCDATA) >
<!ELEMENT stanza (line+) >
<!ELEMENT line (#PCDATA) >

These five lines are examples of formal XML element declarations. A declaration, like an element, is
delimited by angle brackets; the first character following the opening bracket must be an exclamation
mark, followed immediately by one of a small set of XML-defined keywords, specifying the kind of
object being declared. The five declarations above are all of the same type: each begins with anELEMENT
keyword, indicating that it declares an element, in the technical sense defined above. Each consists of
two parts: a name, orgeneric identifierand acontent model.17 Each of these parts is discussed further
below. Components of the declaration are separated bywhitespacecharacters, that is one or more blanks,
tabs or newlines.

2.4.2 Generic identifier
The first part of each declaration above gives the generic identifier (often abbreviated to GI) of the element
which is being declared, for example ‘poem’, ‘title’, etc. A GI may contain alphabetic characters, digits,

16 The DTD language described in the remainder of this section is neither the only way of representing such criteria, nor
the most powerful. One important alternative is provided by another W3C Recommendation: the XML Schema language
(http://www.w3.org/XML/Schema); another is provided by the OASIS Committee’s specification for Relax NG (http://
www.oasis-open.org/committees/relax-ng/). It is highly probable that future releases of these Guidelines will use such
a language, in preference to, or as well as, a DTD.
17 In SGML (but not in XML) the name and the content model are separated by an additional part of the declaration which specifies
minimization rulesfor the element concerned. Minimization (informally speaking, whether or not start- and end-tags must be
present in every occurrence of the element concerned) is not permitted in XML, and is not recommended in the TEI Interchange
format.

TEI Consortium 18 March 2002

2.4 Validating a document’s structure

hyphens, underscore characters, or fullstops, and must begin with a letter. In general, uppercase and
lowercase letters are regarded as distinct characters: an element with the GI<foo> is not the same as
an element with the GI<Foo>: the root element of a TEI-conformant document is thus<TEI.2>, not
<tei.2>.18

2.4.3 Content model
The second part of each declaration, enclosed in parentheses, is called thecontent modelof the element
being defined, because it specifies what may legitimately be contained within it. Contents are specified
either in terms of other elements or using special reserved words. There are several such reserved words,
of which by far the most commonly encountered is#PCDATA, as in this example. This is an abbreviation
for parsed character data,and it means that the element being defined may contain any valid character
data (but no elements). If an XML declaration is thought of as a structure like a family tree, with a
single ancestor at the top (in our case, this would be<anthology>), then almost always, following the
branches of the tree downwards (for example, from<anthology> to <poem> to <stanza> to <line>
and<title>) will lead eventually to#PCDATA. In our example,<title> and<line> are so defined,
since their content models say#PCDATA only and name no embedded elements.

2.4.4 Occurrence indicators
The declaration for<stanza> in the example above states that a stanza consists of one or more lines. It
uses anoccurrence indicator(the plus sign) to indicate how many times the element named in its content
model may occur. There are three occurrence indicators: the plus sign, the question mark, and the asterisk
or star. The plus sign means that there may be one or more occurrences of the element concerned; the
question mark means that there may be at most one and possibly no occurrence; the star means that the
element concerned may either be absent or appear one or more times. Thus, if the content model for
<stanza> were(line*), stanzas with no lines would be possible as well as those with more than one
line. If it were (line?), again empty stanzas would be countenanced, but no stanza could have more
than a single line. The declaration for<poem> in the example above thus states that a<poem> cannot
have more than one title, but may have none, and that it must have at least one<stanza> and may have
several.

2.4.5 Connectors
The content model(title?, stanza+) contains more than one component, and thus needs additionally
to specify the order in which these elements (<title> and <stanza>) may appear. This ordering
is determined by theconnector(the comma) used between its components. There are two possible
connectors: the comma, representing sequence, and the vertical bar, representing alternation.19 If the
comma in this example were replaced by a vertical bar, then a<poem> would consist of either a title or
just stanzas – but not both!

2.4.6 Model groups
In our example so far, the components of each content model have been either single elements or
#PCDATA. It is quite permissible however to define content models in which the components are lists
of elements, combined by connectors. Such lists, known asmodel groups, may also be modified by
occurrence indicators and themselves combined by connectors. To demonstrate these facilities, let us
now expand our example to include non-stanzaic types of verse. For the sake of demonstration, we will
categorize poems as one ofstanzaic, couplets, or blank(or stichic). A blank-verse poem consists simply
of lines (we ignore the possibility of verse paragraphs for the moment)20 so no additional elements need
be defined for it. A couplet is defined as a<firstLine> followed by a<secondLine>.

18 In XML, a single colon may also appear in a GI, where it has a special significance related to the use ofnamespaces, as
further discussed in section2.9.2Namespaces. The characters defined by Unicode ascombining charactersand asextendersare
also permitted. In SGML, the rules stated informally here may vary somewhat depending on the SGML declaration in force; in
particular, it is not usually the case that upper and lower case letters are distinguished, although such usage is highly recommended
for TEI Interchange. The present version of the Guidelines does not mandate this, for compatibility reasons, but this is likely to
change in a subsequent release.
19 In SGML (but not XML), a third connector, the ampersand, is sometimes used, signifying that the components connected by it
may appear in either order. Its use is not supported (or recommended) by the TEI interchange format of SGML.
20 It will not have escaped the astute reader that the fact that verse paragraphs need not start on a line boundary seriously complicates
the issue; see further section2.5Complicating the issue.

March 2002 19 TEI Consortium

2 A Gentle Introduction to XML

<!ELEMENT couplet (firstLine, secondLine) >

The elements<firstLine> and <secondLine> (which are distinguished to enable studies of rhyme
scheme, for example) have exactly the same content model as the existing<line> element;21 we will
therefore add the following two lines to our example DTD:

<!ELEMENT firstLine (#PCDATA)>
<!ELEMENT secondLine (#PCDATA)>

Next, we can change the declaration for the<poem> element to include all three possibilities:
<!ELEMENT poem (title?, (stanza+ | couplet+ | line+)) >

That is, a poem consists of an optional title, followed by one or several stanzas, or one or several couplets,
or one or several lines. Note the difference between this declaration and the following:

<!ELEMENT poem (title?, (stanza | couplet | line)+) >

The second version, by applying the occurrence indicator to the group rather than to each element within
it, would allow for a single poem to contain a mixture of stanzas, couplets, or lines.

A model group can contain#PCDATA as well as named elements: this combination, known asmixed
content, allows for elements in which the sub-components appear with intervening stretches of character
data. For example, if we wished to mark place names wherever they appear inside our verse lines,
then, assuming we have also added a suitable declaration for the<name> element, we could change the
definition for<line> to

<!ELEMENT line (#PCDATA | name)* >

XML (but not SGML) places several constraints on the way that mixed content models may be defined.
In brief, if #PCDATA appears with other elements in a content model: it must always appear as the first
option in an alternation; it may appear once only, and in the outermost model group; and if the group
containing it is repeated, the star operator must be used.22

Quite complex models can easily be built up in this way, to match the structural complexity of many types
of text. As a further example, consider the case of stanzaic verse in which a refrain or chorus appears.
Like a stanza, a refrain consists of repetitions of the line element. A refrain can appear at the start of a
poem only, or as an optional addition following each stanza. This could be expressed by a content model
such as the following:

<!ELEMENT refrain (line+)>
<!ELEMENT poem (title?, (line+ | (refrain?, (stanza, refrain?)+))) >

That is, a poem consists of an optional title, followed by either a sequence of lines, or an un-named
group, which starts with an optional refrain, followed by one of more occurrences of another group,
each member of which is composed of a stanza followed by an optional refrain. A sequence such as
‘refrain - stanza - stanza - refrain’ follows this pattern, as does the sequence ‘stanza - refrain - stanza -
refrain’. The sequence ‘refrain - refrain - stanza - stanza’ does not, however, and neither does the sequence
“stanza - refrain - refrain - stanza.” Among other conditions made explicit by this content model are the
requirements that at least one stanza must appear in a poem, if it is not composed simply of lines, and
that if there is both a title and a stanza they must appear in that order.

Note that the apparent complexity of this model derives from the constraints expressed informally above.
A simpler model, such as

<!ELEMENT poem (title?, (line|refrain|stanza)+) >

would not enforce any of them, and would therefore permit such anomalies as a poem consisting only of
refrains, or an arbitrary mixture of lines and refrains.

21 In SGML, but not XML, it is possible to use a group of names instead of a single GI within an element declaration, so the three
declarations could be combined like this:

<!ELEMENT (line|firstLine|secondLine) O O (#PCDATA)>

This is not however supported by the TEI Interchange Format.
22 The (good) rationale for these restrictions is beyond the scope of this tutorial, as are the consequences of attempting to evade
them. The TEI content models all obey these constraints.

TEI Consortium 20 March 2002

2.5 Complicating the issue

2.5 Complicating the issue
In the simple cases described so far, it has been assumed that one can identify the immediate constituents
of every element in a textual structure. A poem consists of stanzas, and an anthology consists of poems.
Stanzas do not float around unattached to poems or combined into some other unrelated element; a
poem cannot contain an anthology. All the elements of a given document type may be arranged into
a hierarchic structure, arranged like a family tree with a single ancestor at one end and many children
(mostly the elements containing#PCDATA) at the other. For example, we could represent an anthology
containing two poems, the first of which contains two four-line stanzas and the second a single stanza, by
a tree structure like the following figure:

Figure 1.

Clearly, there are many such trees that might be drawn to describe the structure of this or other
anthologies. Some of them might be representable as further subdivisions of this tree: for example,
we might subdivide the lines into individual words, since no word crosses a line boundary. Surprisingly
perhaps, this grossly simplified view of what text is (memorably termed anordered hierarchy of content
objects(OHCO) view of text by Renearet al)23 turns out to be very effective for a large number of
purposes. It is not however adequate for the full complexity of real textual structures, for which more
complex mechanisms need to be employed. For there are many other trees that might be drawn which
do not fit within this tree. We might, for example, be interested in syntactic structures — which rarely
respect the formal boundaries of verse. Or, to take a simpler example, we might want to represent the
pagination of different editions of the same text.

In the OHCO model of text, representation of cases where different elements overlap so that several
different trees may be identified in the same document, is generally problematic. A single hierarchy
must be chosen, and the points at which other hierarchies intersect with it marked (so we might, for
example, mark the pagination by means of empty elements marking the boundary between one page and
the next). Or we could represent alternative hierarchies by means of the pointing and linking mechanisms

23 See Renear, A., Mylonas, E., Durand, D.Refining our notion of what text really is: the problem of overlapping hierarchiesin Ide
and Hockey, eds.,Research in Humanities Computing, OUP, 1996

March 2002 21 TEI Consortium

2 A Gentle Introduction to XML

described in chapter14 Linking, Segmentation, and Alignment. These mechanisms all depend on the use
of attributeswhich may be used both to identify particular elements within a document, and to point to,
link, or align them into arbitrary structures.24

2.6 Attributes
In the XML context, the word ‘attribute’, like some other words, has a specific technical sense. It is
used to describe information which is in some sense descriptive of a specific element occurrence but not
regarded as part of its content. For example, you might wish to add astatus attribute to occurrences of
some elements in a document to indicate their degree of reliability, or to add anidentifier attribute so
that you could refer to particular element occurrences from elsewhere within a document. Attributes are
useful in precisely such circumstances.

Although different elements may have attributes with the same name, (for example, in the TEI scheme,
every element is defined as having an attribute namedlang), they are always regarded as different, and
may have different values assigned to them. If an element has been defined as having attributes, the
attribute values are supplied in the document instance asattribute-value pairsinside the start-tag for
the element occurrence. An end-tag may not contain an attribute-value specification, since it would be
redundant.

The order in which attribute-value pairs are supplied inside a tag has no significance; they must however
be separated by at least one whitespace (blank, newline, or tab) character. In XML, the value part must
always be given inside matching quotation marks, either single or double.25

For example:
<poem id='P1' status="draft"> ... </poem>

Here attribute values are being specified for two attributes previously declared for the<poem> element:id
andstatus. For the instance of a<poem> in this example, represented here by an ellipsis, theid attribute
has the valueP1 and thestatus attribute has the valuedraft. An XML processor can use the values of
the attributes in any way it chooses; for example, a formatter might print a poem element which has the
status attribute set todraft in a different way from one with the same attribute set torevised; another
processor might use the same attribute to determine whether or not poem elements are to be processed at
all. The id attribute is a slightly special case in that, by convention, it is always used to supply a unique
value to identify a particular element occurrence, which may be used for cross reference purposes, as
discussed further below.

2.6.1 Declaring attributes
Like elements, attributes are declared in the XML DTD, using rather similar syntax. As well as specifying
its name and the element to which it is to be attached, it is possible to specify (within limits) what kind
of value is acceptable for an attribute and a default value.

The following declarations could be used to define the two attributes we have supplied above for the
<poem> element:

<!ATTLIST poem
id ID #IMPLIED
status (draft | revised | published) "draft" >

The declaration begins with the symbolATTLIST, which introduces anattribute list specification. This
first specifies the element concerned,poem in this example.26 Following this name is a series of rows, one
for each attribute being declared, each containing three parts.27 These specify the name of the attribute,
the type of value it takes, and a default value respectively.

24 SGML (but not XML) provides a mechanism to define ‘concurrent’ document structures, which is discussed in chapter31
Multiple Hierarchiesbelow; however, this is not widely implemented, and is not further discussed here.
25 In SGML, the quotation marks may be omitted in certain circumstances; however their use is required by the TEI interchange
format.
26 As with content models, it is possible in SGML (but not in XML) to combine several attribute specifications together in a single
declaration by supplying a list of element names instead of a single name; this is not however done in the current version of the TEI
DTDs.
27 These parts are conventionally lined up in rows for human readability; the parser only requires that there be some kind of
whitespace between them.

TEI Consortium 22 March 2002

2.6 Attributes

2.6.2 Attribute names
Attribute names (id and status in this example) are subject to the same restrictions as other names in
XML; they need not be unique across the whole DTD, however, but only within the list of attributes for
a given element.

2.6.3 Attribute values
The second part of an attribute specification can take one of two forms, both illustrated above. The first
case uses one of a number of special keywords to declare what kind of value an attribute may take. In
the example above, the special keywordID is used to indicate that the attributeid will be used to supply
a unique identifying value for each poem instance (see further the discussion in2.6.5 ID and IDREF
attributesbelow). Possible keywords include:

• CDATA: the attribute value may contain any valid character data, including spaces or punctu-
ation marks; even tags may be included in the value, but they will not be recognized by the
XML parser, and will not be processed as tags normally are;

• NMTOKEN: the attribute value must contain only those characters that are valid within a name
or a generic identifier.

• NMTOKENS: the attribute value must contain one or moreNMTOKEN values separated by one or
more whitespace characters.

• ID: the attribute value must be a single word starting with an alphabetic character, which can
be used as a unique identifier (i.e. a given value can only be used once as the value for anyID
attribute);

• IDREF: The attribute value must contain a single word, which has been used as a unique
identifier on some other element;

• IDREFS: The attribute value must contain one or moreIDREF values, separated by one or more
whitespace characters;

• ENTITY: The attribute value must contain aNMTOKEN value which has previously been declared
to be the name of some XMLentity(2.7Entities).

• ENTITIES: The attribute value must contain one or moreENTITY values, separated by one or
more whitespace characters.

In the example above, a list of the possible values for thestatus attribute has been supplied. This means
that a parser can check that no<poem> is defined for which thestatus attribute does not have one of
draft, revised, or published as its value. Alternatively, a parser would have accepted almost any
unbroken string of characters (status="awful", status="awe-ful", or status="12345678") if it
had been aNMTOKEN; or almost any string at all (status="anything goes" or status = "well,
ALMOST anything") if it were CDATA. Sometimes, of course, the set of possible values cannot be pre-
defined. Where it can, as in this case, it is generally better to do so.

2.6.4 Default value
The last piece of information in each attribute declaration specifies how a parser should interpret the
absence of the attribute concerned. This can be done by supplying one of the special keywords listed
below, or (as in this case) by supplying a specific value which is then regarded as the value for every
element which does not supply a value for the attribute concerned. Using the example above, if a poem
is simply tagged<poem>, the parser will treat it exactly as if it were tagged<poem status="draft">.
Alternatively, one of the following keywords may be used to specify a default value for an attribute:

• #REQUIRED: a value must be specified;
• #IMPLIED: value need not be supplied.

Thus, if the attribute declaration above were rewritten as

<!ATTLIST poem id ID #IMPLIED
status (draft | revised | published) #REQUIRED >

then poems which appear in the anthology simply tagged<poem> would be reported as erroneously
tagged, as would any for which some value other thandraft, published, or revised were supplied.

March 2002 23 TEI Consortium

2 A Gentle Introduction to XML

2.6.5ID andIDREF attributes
It is sometimes necessary to refer to an occurrence of one textual element from within another, an obvious
example being phrases such as “see note 6” or “as discussed in chapter 5.” When a text is being produced
the actual numbers associated with the notes or chapters may not be certain. If we are using descriptive
markup, such things as page or chapter numbers, being entirely matters of presentation, will not in any
case be present in the marked up text: they will be assigned by whatever processor is operating on the
text (and may indeed differ in different applications). XML therefore provides a special mechanism by
which any element occurrence may be given a special identifier, a kind of label, which may be used to
refer to it from anywhere else within the same text. The cross-reference itself is regarded as an element
occurrence of a specific kind, which must also be declared in the DTD. In each case, the identifying label
(which may be arbitrary) is supplied as the value of a special attribute.

Suppose, for example, we wish to include a reference within the notes on one poem that refers to another
poem. We will first need to provide some way of attaching a label to each poem: this is done by defining
an attribute for the<poem> element, as suggested above.

<!ATTLIST poem
id ID #IMPLIED >

Here we define an attributeid, the value of which must be of typeID. It is not required that any attribute
of typeID have the nameid as well; it is however a useful convention almost universally observed. Note
that not every poem need carry anid attribute and the parser may safely ignore the lack of one in those
which do not. Only poems to which we intend to refer need use this attribute; for each such poem we
should now include in its start-tag some unique identifier, for example:

<poem id='ROSE'>
<!-- Text of poem with identifier 'ROSE' -->

</poem>
<poem id='P40'>

<!-- Text of poem with identifier 'P40' -->
</poem>
<poem>

<!-- This poem has no identifier -->
</poem>

Next we need to define a new element for the cross reference itself. This will not have any content – it is
only a pointer – but it has an attribute, the value of which will be the identifier of the element pointed at.
This is achieved by the following declarations:

<!ELEMENT poemRef EMPTY >
<!ATTLIST poemRef target IDREF #REQUIRED >

The<poemRef> element has the special content modelEMPTY because it has no content. It has a single
attribute calledtarget. The value of this attribute must be of typeIDREF (the keyword used for cross
reference pointers of this type); furthermore, because the default value is#REQUIRED, it must be supplied
on each occurrence — a<poemRef> with no referent is an impossibility.

With these declarations in force, we can now encode a reference to the poem whoseid attribute specifies
that its identifier isRose as follows:

Blake's poem on the sick rose
<poemRef target='Rose'/> ...

In this example, we have used the special syntax defined by XML for representing empty elements in
which the end-tag and the start-tag are combined into a single tag.28

28 XML also permits representation of empty elements by an immediately adjacent start- and end-tag, thus

<poemRef target='Rose'></poemRef>

Neither form is by default permitted for elements declared asEMPTY in an SGML context, for which empty elements should be
represented by a start-tag in isolation, unless the SGML declaration has been modified to permit the first XML style cited above.
Conversion of the way empty elements are represented is thus usually necessary when processing SGML legacy data in an XML
environment.

TEI Consortium 24 March 2002

2.6 Attributes

When an XML parser encounters this empty element it will simply check that an element exists with
the identifierRose. Different XML processors could take any number of additional actions: a formatter
might construct an exact page and line reference for the location of the poem in the current document and
insert it, or just quote the poem’s title or first lines. A hypertext style processor might use this element
as a signal to activate a link to the poem being referred to. The purpose of the XML markup is simply to
indicate that a cross reference exists: it does not determine what the processor is to do with it.

2.7 Entities
The aspects of XML discussed so far are all concerned with the markup of structural elements within a
document. XML also provides a simple and flexible method of encoding and naming arbitrary parts of
the actual content of a document in a portable way. In XML the wordentityhas a special sense: it means
a named part of a marked up document, irrespective of any structural considerations. An entity might be
a string of characters or a whole file of text. Entities are declared in a DTD in the same way as elements
or attributes, and they are included in a document using a construction known as anentity reference.

2.7.1 Entity declarations
Like all other declarations, an entity declaration begins with a special keyword, in this case the word
ENTITY, followed by the name of the entity to be declared, and the value to be used when it is referenced
in the document. For example, the following declaration

<!ENTITY tei "Text Encoding Initiative">

defines an entity whose name istei and whose value is the stringText Encoding Initiative. This
is an instance of anentity declaration, which declares aninternal entity. The following declaration, by
contrast, declares anexternal entity(sometimes called, loosely, asystem entity):

<!ENTITY ChapTwo SYSTEM "p4chap2.xml">

This defines an external entity whose name isChapTwo and whose value is the text associated with
the system identifier — in this case, the system identifier is the name of an operating system file and
the replacement text of the entity is the contents of the file. However, XML does not require system
identifiers to be operating-system file names.29 We might define the same entity as referring to a web
page:

<!ENTITY ChapTwo SYSTEM
"http://www.tei-c.org/P4X/p4chap2.xml">

System identifiers are, by their nature, system dependent; in the interests of data portability, therefore,
XML provides another way of declaring external entities, shown here:

<!ENTITY p3.sg
PUBLIC "-//TEI//TEXT Guidelines Chapter on XML//EN"
"p4chap2.xml">

Here, the keywordSYSTEM has been replaced by the keywordPUBLIC, and the system identifier has been
preceded by a special string known as aformal public identifier. Although public identifiers can (in
principle) take virtually any form; it is usual to use the form shown above, in which the delimiters ‘//’
divide the identifier into the following parts:

TEI indicates the owner of this public identifier (often but not necessarily the owner of the data in
question); the preceding ‘-’ signals that this particular owner identifier is not registered with
ISO (a ‘+’ would imply that one could find out the full name and address of the owner from
the official registry of owner identifiers)

TEXT is a keyword indicating the nature of the entity: other legal values areDOCUMENT (for
full XML documents),DTD (for document type declarations),ELEMENTS (for sets of element
declarations),ENTITIES (for sets of entity declarations),NOTATION (for notation definitions),
and a number of others which are less frequently needed and will not be discussed here.

29 In general, an external entity can be any data source available to the XML processor: files, results of database queries, results of
calls to system functions, web pages — anything at all. System identifiers can use any method to name an entity which the XML
parser’s interface to its operating environment can use to elicit data from the environment.

March 2002 25 TEI Consortium

2 A Gentle Introduction to XML

Guidelines Chapter on XML gives a descriptive name to the entity.
EN is the ISO language code for the human language in which the entity is written.

Public identifiers help make XML documents less dependent on particular computer systems, by making
it possible to confine the mapping between entity names and system identifiers to a single place. As
with other such techniques, they require XML systems to provide mechanisms for mapping from the
public identifiers to file identifiers or other system identifiers: such a mapping is typically provided by an
additional component known as acatalog file(2.10.4Ancillary Files).

2.7.2 Entity references
Once an entity has been declared it may be referenced anywhere within a document. This is done by
supplying its name prefixed with the ampersand character and followed by the semicolon.30

When an XML parser encounters such anentity reference,it immediately substitutes the value declared
for the entity name. Thus, the passageThe work of the &tei; has only just begun will be
interpreted by an XML processor exactly as if it readThe work of the Text Encoding Initiative
has only just begun. In the case of an external entity, it is, of course, the contents of the operating
system file which are substituted, so that the passageThe following text has been suppressed:
&ChapTwo; will be expanded to include the whole of whatever the system finds in the filep4chap2.xml.

This obviously saves typing, and simplifies the task of maintaining consistency in a set of documents. If
the printing of a complex document is to be done at many sites, the document body itself might use an
entity reference, such as&site;, wherever the name of the site is required. Different entity declarations
could then be used at different sites to supply the appropriate string to be substituted for this name, with
no need to change the text of the document itself.

In XML documents, two special entities are predefined, with the namesamp andlt. These are available
without declaration, so that the ampersand character or less-than sign can be represented in a text without
their being confused with the start of an entity reference or a tag respectively.

2.7.3 Character references
As mentioned above, XML documents all use the same internal character encoding. Since not all
computer systems currently support this encoding directly, a special form of entity reference is defined
which can be used to represent individual characters from the Unicode character set in a portable way by
simply representing their numeric value, in decimal or hexadecimal notation.

For example, the character é is represented within an XML document as the Unicode character with
hexadecimal value00E9. If such a document is being prepared on (or exported to) a system using a
different character set, say ISO 646, in which this character is not available, it may instead be represented
by the character entity referenceé (the x indicating that what follows is a hexadecimal value)
or é. Entity references of this type do not need to be predefined in XML, since the underlying
character encoding for XML is always the same.

To aid legibility however, it is common practice instead to use a mnemonic name (such aseacute)
for such character references, and to map these to the appropriate Unicode value by means of entity
declarations of exactly the same type as those already discussed. Standard mnemonic names have been
defined by ISO for the characters in most widely-used writing systems, and grouped together into widely-
availableentity sets. The standard ‘ISO lat1’ entity set, for example, includes a declaration like the
following for the character é:

<!ENTITY eacute "é"> <!-- LATIN SMALL LETTER E WITH ACUTE -->

so that, for an XML document which embeds this entity set in its DTD, a non-Unicode enabled input
system may also represent this character by the entity referenceé.

This string substitutionmechanism has many other applications. Suppose, for example, that we wish to
encode the use of ligatures in early printed texts. The ligatured form of ‘ct’ might be distinguished from
the non-ligatured form by encoding it as&ctlig; rather thanct. Other special typographic features such

30 In SGML (but not XML) the semicolon may be omitted if the entity reference is followed by whitespace; this is not recommended
practice, and may be prohibited in future revisions of these Guidelines.

TEI Consortium 26 March 2002

2.7 Entities

as leafstops or rules could equally well be represented by mnemonic entity references in the text. When
processing such texts, an entity declaration would be added giving the desired representation for such
textual elements. If, for example, ligatured letters are of no interest, we would simply add a declaration
such as

<!ENTITY ctlig "ct" >

and the distinction present in the source document would be removed. If, on the other hand, a formatting
program capable of representing ligatured characters is to be used, we might replace the entity declaration
to give whatever sequence of characters such a program requires as the expansion.

More detailed discussion of this and related character encoding issues is provided in chapter4 Languages
and Character Sets

2.7.4 Unparsed entities and Notations
An XML entity may contain non-textual information such as pictures, video, or sound in digitized form.
Such objects can be embedded in a document by reference in exactly the same way as any other external
entity. When such entities are declared, however, it is essential to indicate that they contain data which
an XML parser or processor cannot handle in the same way as the surrounding data — it is no use trying
to process entities contain pictures or sound as if they contain text! This is accomplished by including an
additional keyword in the declaration of such entities, as in the following example:

<!ENTITY fig1 SYSTEM "figure1.png" NDATA png>

The keywordNDATA indicates that this external entity isunparsed: it contains non-XML data which
an XML parser should ignore. It is followed by an additional name (png in the example above) which
identifies thenotationused for this data, that is, the set of conventions which a processor must understand
in order to process the data correctly. XML may itself be thought of as a notation, which is implied for
all external entities not otherwise labelled. Notations should be declared in a DTD along with everything
else: for the DTD in which the above declaration appears, a notation declaration like the following would
also be appropriate:

<!NOTATION png PUBLIC
'-//TEI//NOTATION IETF RFC2083 Portable Network Graphics//EN'>

This gives a formal public identifier for the place where the notationpng is defined.

More detailed discussion of external unparsed entities and of recommended graphics notations are given
in section22.3Specific Elements for Graphic Images.

2.7.5 Parameter entities
A special form of entities,parameter entities, may be used within XML markup declarations; these differ
from the entities discussed above (which technically are known asgeneral entities) in two ways:

• Parameter entities are usedonlywithin XML markup declarations; they may not appear within
the document itself.

• Parameter entity references are delimited by percent sign and semicolon, rather than by
ampersand and semicolon.

Declarations for parameter entities take the same form as those for general entities, but insert a percent
sign between the keywordENTITY and the name of the entity itself. Whitespace characters (blanks, tabs,
or line breaks) must occur on both sides of the percent sign. For example, an internal parameter entity
nameda.global might be declared with the expansionid ID #REQUIRED rend CDATA #IMPLIED as
follows:

<!ENTITY % a.global
'id ID #REQUIRED rend CDATA #IMPLIED'>

With this declaration at the start of a DTD, the task (for example) of declaring attributes consistently on
all elements within a DTD becomes much simpler: all that is needed is to reference the parameter entity,
as in this example:

<!ATTLIST myElement %a.global;
another CDATA #IMPLIED >

March 2002 27 TEI Consortium

2 A Gentle Introduction to XML

since the attribute list for<myElement> will now be understood to contain whatever list of attribute
definitions was declared as the value for the parameter entitya.global, followed by the definition for an
attribute calledanother.

Moreover, if we wish to change the global attributes or add another, all we need do is provide a new
declaration fora.global in the DTD. We do not even need to modify the existing declaration, but simply
ensure that the new one precedes the old one in the DTD being processed. This is because of one very
significant aspect of entity declarations not mentioned above: if a declaration is given for the same entity
more than once, then only the first declaration is applicable. If, for example, an XML processor finds the
following:

<!ENTITY switch "UP">
<!-- several other declarations -->
<!ENTITY switch "DOWN">
<!ENTITY switch "SIDEWAYS">
<!-- -->
The switch is &switch;

then the entity reference at the end (assumed to be inside a document) will be resolved as the string
"UP" because that is the first declaration encountered. This rule applies equally to general entities
and parameter entities, and has important consequences for the TEI scheme. The TEI document type
declaration makes extensive use of parameter entities to control the selection of different tag sets and to
make it easier to modify the TEI DTD. Numerous examples of their use may thus be found in chapter3
Structure of the TEI Document Type Definition. They are also used to control the behaviour of conditional
marked sections, as further discussed in section2.8.1CDATA marked sectionbelow.

2.8 Marked sections
It is occasionally necessary to mark some portion of an XML document for special treatment. Within the
body of a document, it is often convenient to be able to mark some portion as containing XML markup
which is to be ignored. Within a DTD, it is often convenient to mark certain parts to be included or
excluded in specific circumstances. To deal with the former situation, XML defines a construct known as
aCDATA marked section; to deal with the latter, a syntactically similar construct known as aconditional
marked sectionmay be used.

Most users of the TEI encoding scheme will never need to use marked sections, and may safely skip
the remainder of this discussion. The TEI DTD makes extensive use of conditional marked sections,
however, and this section should be read carefully by anyone wishing to follow in detail the discussions
in chapter3 Structure of the TEI Document Type Definition.

2.8.1 CDATA marked section
A CDATA marked section is delimited by two rather arcane sequences of characters: its start is marked
by the string<![CDATA[, and its end by the string]]>. Note that spaces are not permitted within either
string.

Within a CDATA marked section any strings of characters which look like XML tags or entity references
will not be recognized as such by the XML parser: they are thus a very useful way of including examples
of XML tagging within a document itself written in XML. For example:

<p>The <gi>term</gi> element may be used to mark any
technical term:
<eg><![CDATA[
This <term>recursion</term> is giving me a headache.
]]></eg></p>

In this extract from a document describing the way that an XML element called<term> may be used, the
cited example (tagged with a<eg> element) includes an instance of the<term> element which will not
be recognised as such, but simply as a string of characters, because it is contained by a marked section.

A similar effect can be achieved by simply replacing the angle brackets by entity references, but this
makes the text somewhat unreadable in its native XML form if the example is of any length:

TEI Consortium 28 March 2002

2.8 Marked sections

<p>The <gi>term</gi> element may be used to mark any
technical term:
<eg>
This <term>recursion</term> is giving me a headache.
</eg></p>

2.8.2 Conditional marked section
The CDATA marked section is a special case of the more generalmarked sectionconstruct provided by
SGML. The conditional marked section is another instance of its use. Within the body of a DTD (but
not within the body of a document),31 two other kinds of marked section are possible: anIGNORE marked
section, and anINCLUDE marked section. As the names suggest, material within anIGNORE marked
section is ignored during processing, while material within anINCLUDE marked section is included.
These can be used to include and exclude portions of a DTD selectively, so as to adjust it to relevant
circumstances.

Suppose, for example, that we want to allow for poems which contain either only stanzas, or only
couplets. A content model to enforce this rule is easy to define, but it does require us to to declare
both possibilities — we must provide declarations for both<stanza> and<line> elements, even though
in a given document we know that only one will appear. An alternative approach might be to provide two
different declarations for<poem>, as follows:

<![INCLUDE[
<!ELEMENT poem (stanza+)>
<!ELEMENT stanza (line+)>

]]>
<![IGNORE[

<!ELEMENT poem (couplet+)>
<!ELEMENT couplet (line,line)>

]]>

The first declaration here will be the one used, since it is within anINCLUDE marked section. The second
one will be ignored. To swap around, we changeINCLUDE to IGNORE, and vice-versa.

The literal keywordsINCLUDE andIGNORE, however, are not much use in adjusting a DTD or a document
to a user’s requirements. If modifying a DTD to match user requirements involves editing the text
manually (changingIGNORE to INCLUDE as appropriate), it is probably just as easy to add or delete
the affected parts of the DTD directly. However, theIGNORE andINCLUDE keywords need not be given
as literal values; they can also be represented by a parameter entity reference.

In the following example, we have replaced the keywords by references to two parameter entities:
<![%stanzas;[

<!ELEMENT poem (stanza+)>
<!ELEMENT stanza (line+)>
<!ENTITY couplets "IGNORE">

]]>

<![%couplets;[
<!ELEMENT poem (couplet+)>
<!ELEMENT couplet (line,line)>

]]>

The exact meaning of this will depend on the values of the parameter entitiesstanzas andcouplets when
the DTD is processed. When parameter entities are used in this way to control marked sections in a DTD,
the DTD file must contain default declarations for them. If the user wishes to override any of the defaults,
all that needs to be done is to supply a new declaration and ensure that it will be processed before the
existing default. The easiest way of doing this is to supply it within a special part of the DTD known as
theDTD subset.32

31 This restriction does not apply to SGML documents, which may employ conditional marked sections within the document
instance. Such usage is not recommended where XML/SGML compatibility is a consideration.
32 This is explained in more detail in section2.10.2The DOCTYPE declarationbelow; the key point for our present purposes is
that declarations in the DTD subset are always read before those in the external DTD file, and, as mentioned above in section2.7.5
Parameter entities, the first declaration of a given entity is the one which counts.

March 2002 29 TEI Consortium

2 A Gentle Introduction to XML

With the following default declarations, poems will consist only of stanzas and the second set of
declarations will be ignored:

<!ENTITY % stanzas "INCLUDE">
<![%stanzas;[

<!ELEMENT poem (stanza+)>
<!ELEMENT stanza (line+)>
<!ENTITY % couplets "IGNORE">

]]>

<!ENTITY % couplets "INCLUDE">
<![%couplets;[

<!ELEMENT poem (couplet+)>
<!ELEMENT couplet (line,line)>

]]>

This works because, although there are two declarations for the parameter entitycouplets, only the first
is effective. It declares the parameter entitycouplets to have the valueIGNORE, and so the declarations
within the second conditional marked section are ignored. Suppose however that a declaration forstanzas
giving it the valueIGNORE were processed before this part of the DTD. In that event, only the second
declaration for the entitycouplets would be effective, since all the declarations within the conditional
marked section governed bystanzas would be ignored.

Variations on this technique are used to control how the various parts of a TEI DTD are constructed. For
example:

<!ENTITY % TEI.prose 'INCLUDE'>
<!ENTITY % TEI.extensions.dtd SYSTEM 'mystuff.dtd'>

These declarations have two effects: they activate a section of the DTD containing declarations relevant to
prose and they add into the DTD whatever additional declarations are held in the external filemystuff.dtd.
In the standard DTD files, there is a marked section controlled by the parameter entityTEI.prose, the
default value of which isIGNORE, and there is also a reference to the parameter entityTEI.extensions.dtd,
the default value for which is the null string. The declarations cited above over-ride both these defaults:
the declarations within the marked section controlled by the parameter entityTEI.prose are thus made
active; and the reference to theTEI.extensions.dtd parameter entity is replaced by the content of the file
mystuff.dtd.

2.9 Other components of an XML document
In addition to the elements and entities so far discussed, an XML document can contain a few other
formally distinct things. An XML document may contain arbitrary signals or flags for use when the
document is processed in a particular way by some class of processor: a common example in document
production is the need to force a formatter to start a new page at some specific point in a document: such
flags are calledprocessing instructions. An XML document may also contain instances of elements which
are defined in some other DTD than the one declared in itsDOCTYPE declaration, or (more generally) from
some othernamespace.

2.9.1 Processing instructions
Although one of the aims of using XML is to remove any information specific to the processing of
a document from the document itself, it is occasionally very convenient to be able to include such
information — if only so that it can be clearly distinguished from the structure of the document. As
suggested above, one common example is the need, when processing an XML document for printed
output, to include a suggestion that the formatting processor might use to determine where to begin a new
page of output. Page-breaking decisions are usually best made by the formatting engine alone, but there
will always be occasions when it may be necessary to over-ride these. An XML processing instruction
inserted into the document is one very simple and effective way of doing this without interfering with
other aspects of the markup.

Here is an example XML processing instruction:
<?tex \newpage ?>

TEI Consortium 30 March 2002

2.9 Other components of an XML document

It begins with<? and ends with?>. In between are two space-separated strings: by convention, the first is
the name of some processor (tex in the above example) and the second is some data intended for the use
of that processor (in this case, the instruction to start a new page). The only constraint placed by XML
on the strings is that the first one must be a valid XML name; the other can be any arbitrary sequence of
characters, not including the closing character-sequence?>,

2.9.2 Namespaces
A valid XML document necessarily specifies the DTD in which its constituent elements are defined.
However, a well-formed XML document is not required to specify its DTD — indeed, it may not even
have a DTD; it would still be useful to indicate that the element names used in it have some defined
provenance. Furthermore, it might be desirable to include in a document elements which are defined
(possibly differently) in different DTDs. A cabinet-maker’s DTD might well define an element called
<table> with very different characteristics from those of a documentalist’s.

The concept ofnamespacewas introduced into the XML language as a means of addressing these
and related problems. If an XML document is thought of as an expression in some language, then a
namespace may be thought of as analogous to the lexicon of that language. Just as a document can
contain words taken from different languages, so a well-formed XML document can include elements
taken from different namespaces. Note however that because a document can only specify a single DTD,
elements which belong to namespaces other than that defined by the DTD will appear to be illegal to a
simple XML validator: documents which use namespaces require special handling by such processors.
Like a DTD, a namespace contains a list of valid element names; unlike a DTD, a namespace also has a
distinctiveprefixand an identifyingname.

Suppose for example that we wish to extend our simple verse DTD to include markup of wordclass
information such as ‘noun’, ‘verb’, etc. Suppose further that a DTD already exists in which all the tags
we wish to use have been defined. We could (of course) simply combine the two DTDs to form a new one,
but this may not be practicable: for example, there might be an element defined with the same name but
different meanings in each DTD. Instead, we supply theprefix associated with the grammatical DTD’s
namespace (gram, for example) on each element which is taken from that namespace, as in the following
example:

<line xmlns:gram="http://www.gram.org">
<gram:aux>Shall</gram:aux>
<gram:pron>I</gram:pron>
<gram:verb>compare</gram:verb>
<gram:pron>thee</gram:pron>
<gram:prep>to</gram:prep>
<gram:art>a</gram:art>
<gram:noun>summer</gram:noun>
's
<gram:noun>day</gram:noun>
?

</line>

In this example, the elements<aux>, <pron> etc. are understood to be taken from a namespace
namedhttp://www.gram.org, which uses the prefixgram, as indicated by the special purpose attribute
xmlns:gram. The element<line> (and the two untagged#PCDATA fragments it contains) however are
in no particular namespace. We could specify that they belong, by default, to the TEI namespace by
supplying a default namespace declaration, as follows:

<line xmlns="http://www.tei-c.org"
xmlns:gram="http://www.gram.org">
<gram:aux>Shall</gram:aux>
<gram:pron>I</gram:pron>
<gram:verb>compare</gram:verb>
<gram:pron>thee</gram:pron>
<gram:prep>to</gram:prep>
<gram:art>a</gram:art>
<gram:noun>summer</gram:noun>
's

March 2002 31 TEI Consortium

2 A Gentle Introduction to XML

<gram:noun>day</gram:noun>
?

</line>

As shown here, an XML document may have one default namespace declaration, and also any number
of other namespace declarations. The scope of a namespace declaration is the element on which it is
declared: in the example above, both the default TEI namespace and the additional gram namespace
apply to all elements in the document since they are declared on the root element. In the following
example, the gram namespace is available only within the<body> element, while the TEI namespace
remains the default for the whole document:

<text xmlns="http://www.tei-c.org">
<front>

<!-- gram prefix not available here -->
</front>
<body xmlns:gram="http://www.gram.org">

<!-- gram prefix is available here -->
</body>

</text>

2.10 Putting it all together
An XML conformant document has a number of parts, not all of which have been discussed in this
chapter, and many of which the user of these Guidelines may safely ignore. For completeness, the
following summary of how the parts are inter-related may however be found useful.

An XML document consists of aprolog and adocument instance. The prolog contains anXML
declaration (described below) and (optionally) adocument type declaration, which contains element
and entity declarations such as those described above. Different software systems may provide different
ways of associating the document instance with the prolog; in some cases, for example, the prolog may
be ‘hard-wired’ into the software used, so that it is completely invisible to the user.

2.10.1 SGML and XML declarations
As noted above, SGML allows for variation in several aspects of the dialect of SGML being used such
as the character set, the codes used for SGML delimiters, the length of identifiers, etc. These variations
are defined by a special additional document known as theSGML Declarationprefixed to an SGML
document, implicitly or explicitly. Its content for TEI-conformant document types is discussed further in
chapters39Formal Grammar for the TEI-Interchange-Format Subset of SGMLand28Conformance.

All XML documents use the same SGML declaration, and it is therefore erroneous to supply one. The
only aspect of an XML document which may vary is the external character encoding used, which is
specified by theencoding parameter on an initialXML declaration. This looks syntactically like a
processing instruction (2.9.1Processing instructions):

<?xml version="1.0" encoding="iso-8859-1"?>

but is generally regarded as a special kind of declaration. If supplied, the XML declaration must be the
first thing found in an XML document. It can specify the version number of the XML Recommendation
applicable to the document it introduces (in this case, version 1.0), and additionally the character encoding
used to represent the Unicode characters within it. In this case, the 16 bit characters of Unicode have been
mapped to the 8 bit character set known as ISO 8859-1; any characters present in the document but not
available in the target character set will be represented as character entity references (2.7.3Character
references).

2.10.2 TheDOCTYPE declaration
An XML file which is valid (as opposed to simply well-formed) must specify a DTD against which its
content is to be validated. This is the function of theDOCTYPE declaration.

The DOCTYPE declaration contains, following theDOCTYPE keyword, at least two parts: the name of
the root element for the associated document, and a set of declarations for all the elements, attributes,
notations, entities, etc. which together define the document type declaration (DTD) of that document.
Note, incidentally, that the root element name (and hence theDOCTYPE name) may be that of any element

TEI Consortium 32 March 2002

2.10 Putting it all together

whose declaration is supplied in this set. The declarations may be supplied explicitly, or by reference to
an external entity such as a file, or by a combination of the two.

Taking each of these possibilities in turn, we first present aDOCTYPE declaration in which the declarations
for all the elements, attributes, etc. required are given explicitly:

<!DOCTYPE myDoc [
<!ELEMENT myDoc (p+) >
<!ATTLIST myDoc n CDATA #IMPLIED>
<!ELEMENT p (#PCDATA)>

]>
<myDoc n="1">

<p>This is an instance of a "my.doc" document</p>
</myDoc>

Note that the required declarations are enclosed within square brackets inside theDOCTYPE declaration:
this part of the declaration is technically known as theDTD subset.

More usually, however, the required declarations will be held in a separate entity and invoked by
reference, as follows:

<!DOCTYPE myDoc SYSTEM "myDoc.dtd" []>
<myDoc>

<p>This is another instance of a "myDoc" document.</p>
<p>It has two paragraphs.</p>

</myDoc>

Note the similarity between the syntax used to reference the external entity containing the required
declarations and that used to define any other system entity (see2.7.1Entity declarations). The square
brackets may be supplied even though they enclose nothing, as in this example, or they may be omitted.

Next, we present a case where declarations are given both within the DTD subset and by reference to an
external entity:

<!DOCTYPE myDoc SYSTEM "myDoc.dtd" [
<!ENTITY tla "three letter acronym">]>

<myDoc>
<p>This is yet another instance of a "myDoc" document.</p>
<p>It is surprisingly free of &tla;s.</p>

</myDoc>

Any kind of declaration may be added to a DTD subset; as we have already seen (2.8.2Conditional
marked section), this is the mechanism by which the TEI DTD is customized.

<!DOCTYPE TEI.2 PUBLIC "-//TEI P3//DTD Main Document Type//EN" "tei2.dtd" [
<!ENTITY % TEI.prose 'INCLUDE'>
<!ENTITY % TEI.XML 'INCLUDE'>
<!ENTITY tla "Three Letter Acronym">
<!ENTITY % x.phrase 'myTag|'>
<!ELEMENT myTag (#PCDATA) >
<!-- any other special-purpose declarations or

re-declarations go here -->
]>

<TEI.2>
<!-- This is an instance of a modified TEI.2 type document, which

may contain <myTag>my special tags</myTag> and references
to my usual entities such as &tla;. -->

</TEI.2>

When, as here, the document type declaration in force includes both the contents of the DTD subset,
and the contents of some external entity (in the case above, whatever file is specified by thePUBLIC
identifier given,tei2.dtd by default), declarations in the DTD subset are always carried out first. As
noted above, (2.7.5Parameter entities), the order is important, because in XML only the first declaration
of an entity counts. In the above example, therefore, the declaration of the entitytla in the DTD subset
takes precedence over any declaration of the same entity in the filetei2.dtd. Similarly, the declaration for

March 2002 33 TEI Consortium

2 A Gentle Introduction to XML

x.data takes precedence over the existing declaration for that entity in the TEI dtd. It is perfectly legal
for entities to be declared more than once; elements, by contrast, may not be declared more than once; if
a declaration for<myTag> were already contained in filetei.dtd, the XML parser would signal an error.

2.10.3 The Document Instance
The document instance is the content of the document itself. It contains only text, markup, and entity
references, and thus may not contain any new declarations. A convenient way of building up large
documents in a modular fashion might be to use the DTD subset to declare entities for the individual
pieces or modules, thus:

<!DOCTYPE TEI.2
PUBLIC "-//TEI P3//DTD Main Document Type//EN"

"tei2.dtd" [
<!ENTITY % TEI.prose "INCLUDE">
<!ENTITY % TEI.XML "INCLUDE">
<!ENTITY chap1 SYSTEM "chap1.txt">
<!ENTITY chap2 SYSTEM "chap2.txt">
<!ENTITY chap3 "-- not yet written --">
]>

<TEI.2>
<teiHeader> <!-- ... --> </teiHeader>

<text>
<body>

&chap1;
&chap2;
&chap3;
<!-- ... -->

</body>
</text>

</TEI.2>

In this example, the TEI DTD has been extended by entity declarations for each chapter of some
document. The first two are external entities referring to the file in which the text of particular chapters is
to be found; the third a dummy, indicating that the text does not yet exist (alternatively, an entity with a
null value could be used). In the document instance, the entity references&chap1; etc. will be resolved
by the parser to give the required contents. The chapter files themselves will not, of course, contain any
element, attribute list, or entity declarations – just tagged text.

2.10.4 Ancillary Files
A working XML system is likely to use a number of ancillary files to hold configuration information.
These may include stylesheets, specialized processing instructions, collections of relevant entity decla-
rations, setup information for specific programs, and many other components. In general, the ways in
which such components are to be assembled or configured vary with the system and cannot readily be
described here.

To assist in this process many systems take advantage of an additionalcatalog file, the chief function
of which is to associate the formal public identifiers used in a document or DTD with specific system
entities, over-riding any default association. One widely used format for such catalog files was defined
by an industry group originally known as SGML Open, and such files are therefore known as SGML Open
catalogs, even though they may also be used by XML processors. The group has more recently redefined
itself under the name of the Organization for the Advancement of Structured Information Standards
(OASIS), and in August 2001 published a specification for catalog files in XML form.33 Catalog files
in both SGML Open and XML formats are distributed along with the current TEI DTD. See chapter36
Obtaining the TEI DTDfor more information.

33 The SGML Open catalog format is documented in SGML Open Technical Resolution 9401:1997,Entity Management, which is
available fromhttp://xml.coverpages.org/sotr9401-a2.html; the XML Catalog specification, also produced by OASIS is
available from their site athttp://www.oasis-open.org/committees/entity/spec.html.

TEI Consortium 34 March 2002

