1.3 Historical Background

2 A Gentle Introduction to XML

As originally published in previous editions of the Guidelines, this chapter provided a gentle introduction to ‘just enough’
SGML for anyone to understand how the TEI used that standard. Since then, the Gentle Guide seems to have taken on a life
of its own independent of the Guidelines, having been widely distributed (and flatteringly imitated) on the web. In revising

it for the present draft, the editors have therefore felt free to reduce considerably its discussion of SGML-specific matters, in
favour of a simple presentation of how the TEI uses XML.

The encoding scheme defined by these Guidelines may be formulated either as an application of the
Standard Generalized Markup Language (SGMir)of the more recently developed W3C Extensible
Markup Language (XML) Both SGML and XML are widely-used for the definition of device-
independent, system-independent methods of storing and processing texts in electronic form; XML be
in fact a simplification or derivation of SGML. In the present chapter we introduce informally the basi
concepts underlying such markup languages and attempt to explain to the reader encountering tt
for the first time how they are actually used in the TEI scheme. Except where the two are explicit
distinguished, references to XML in what follows may be understood to apply equally well to the TE
usage of SGML. For a more technical account of TEI practice see chzpt@onformancefor a more
technical description of the subset of SGML used by the TEI encoding scheme, see 88dfatanal
Grammar for the TEI-Interchange-Format Subset of SGML

XML is an extensible markup language used for the description of marked-up electronic text. Mol
exactly, XML is ametalanguagethat is, a means of formally describing a language, in this case, a
markuplanguage. Historically, the wortharkuphas been used to describe annotation or other marks
within a text intended to instruct a compositor or typist how a particular passage should be printed or |
out. Examples include wavy underlining to indicate boldface, special symbols for passages to be omit
or printed in a particular font and so forth. As the formatting and printing of texts was automated, tf
term was extended to cover all sorts of special codes inserted into electronic texts to govern formatti
printing, or other processing.

Generalizing from that sense, we define markup, or (synonymoestgding as any means of making
explicit an interpretation of a text. Of course, all printed texts are implicitly encoded (or marked up
in this sense: punctuation marks, use of capitalization, disposition of letters around the page, even
spaces between words, might be regarded as a kind of markup, the function of which is to help the hun
reader determine where one word ends and another begins, or how to identify gross structural featt
such as headings or simple syntactic units such as dependent clauses or sentences. Encoding a te
computer processing is in principle, like transcribing a manuscript Boriptio continug a process of
making explicit what is conjectural or implicit, a process of directing the user as to how the content ¢
the text should be (or has been) interpreted.

By markup languageve mean a set of markup conventions used together for encoding texts. /
markup language must specify what markup is allowed, what markup is required, how markup is
be distinguished from text, and what the markup means. XML provides the means for doing the fir
three; documentation such as these Guidelines is required for the last.

The present chapter attempts to give an informal introduction to those parts of XML of which a props
understanding is necessary to make best use of these Guidelines. The interested reader should also c«
one or more of the dozens of excellent introductory text books or web sites now available on the subje

2.1 What's special about XML?

March 2002

Three characteristics of XML seem to us to make it unlike other other markup languages:

e its emphasis on descriptive rather than procedural markup;
e itsdocument typeoncept;

4 International Organization for Standardizatiol§O 8879: Information processing — Text and office systems — Standard
Generalized Markup Language (SGMIGeneva]: ISO, 1986).

5 World Wide Web ConsortiumExtensible Markup Language (XML) 1 #vailable fromhttp://www.w3.org/TR/REC-xml

5 In the “continuous writing” characteristic of manuscripts from the early classical period, words are written continuously with n
intervening spaces or punctuation.

13 TEI Consortium

2 A Gentle Introduction to XML

e its independence of any one hardware or software system.

These three aspects are discussed briefly below, and then in more depth in s&8tki& structures
and2.7 Entities

The markup language with which XML is most frequently compared, however, is HTML, the language i
which web pages had always been written until XML began to replace it. Compared with HTML, XML
has some other important characteristics:

e XML is extensible: it does not contain a fixed set of tags

e XML documents must be well-formed according to a defined syntax, and may be formally
validated

e XML focuses on the meaning of data, not its presentation

2.1.1 Descriptive markup

In a descriptive markup system, the markup codes used do little more than categorize parts of a docum
Markup codes such agpara> or \end{list} simply identify a portion of a document and assert of it
that “the following item is a paragraph,” or “this is the end of the most recently begun list,” etc. By
contrast, a procedural markup system defines what processing is to be carried out at particular po
in a document: “call procedure PARA with parameters 1, b and x here” or “move the left margin :
guads left, move the right margin 2 quads right, skip down one line, and go to the new left margin
etc. In XML, the instructions needed to process a document for some particular purpose (for examg
to format it) are sharply distinguished from the descriptive markup which occurs within the documer
They are collected outside the document in separate procedures or programs, and are usually expre
in a distinct document calledstylesheetthough it may do much more than simply define the rendition
or visual appearance of a document.

With descriptive instead of procedural markup the same document can readily be processed in m
different ways, using only those parts of it which are considered relevant. For example, a conte
analysis program might disregard entirely the footnotes embedded in an annotated text, while a formatt
program might extract and collect them all together for printing at the end of each chapter. Different kin
of processing can be carried out with the same part of a file. For example, one program might extr:
names of persons and places from a document to create an index or database, while another, oper
on the same text, but using a different stylesheet, might print names of persons and places in a distinc
typeface.

2.1.2 Types of document

TEI Consortium

A second key aspect of XML is its notion ofdmcument typedocuments are regarded as having types,
just as other objects processed by computers do. The type of a document is formally defined by
constituent parts and their structure. The definition of a ‘report’, for example, might be that it consiste
of a ‘title’ and possibly an ‘author’, followed by an ‘abstract’ and a sequence of one or more ‘paragraphs
Anything lacking a title, according to this formal definition, would not formally be a report, and neithel
would a sequence of paragraphs followed by an abstract, whatever other report-like characteristics tf
might have for the human reader.

If documents are of known types, a special purpose program (calbedsal), once provided with an
unambiguous definition of a document’s type, can check that any document claiming to be of a that ty
does in fact conform to the specification. A parser can check that all and only elements specified fo
particular document type are present, that they are combined in appropriate ways, correctly ordered
so forth. More significantly, different documents of the same type can be processed in a uniform we
Programs can be written which take advantage of the knowledge encapsulated in the document struc
information, and which can thus behave in a more ‘intelligent’ fashion.

7 We do not here discuss in any detail the ways that a style sheet can be used or defined, nor do we discuss the increas
popular W3C Stylesheet Languages. $a#p://www.w3.org/TR/xsl for the Extensible Stylesheet Language (XSL), and
http://www.w3.org/TR/xslt for the XSL Transformations (XSLT) Language.

14 March 2002

2.1 What's special about XML?

2.1.3 Data independence

A basic design goal of XML is to ensure that documents encoded according to its provisions can ma
from one hardware and software environment to another without loss of information. The two featur
discussed so far both address this requirement at an abstract level; the third feature addresses it a
level of the strings of data characters of which documents are composed. All XML documents, whate\
language or writing system they employ, use the same underlying character encoding (that is, the sz
method of representing the graphic forms making up a particular writing system as binary Haita).
encoding is defined by an international standawdich is implemented by a universal character set
maintained by an industry group called the Unicode Consortium, and known as Utficbigeprovides

a standardised way of representing any of the thousands of discrete symbols making up the worl
writing systems, past and present.

For technical and historical reasons which need not concern us, it is often necessary to translate t
encoded as Unicode into some smaller or less general encoding scheme. XML uses a general pur,
string substitutiormechanism for this purpose, inherited from SGML (which predates the availability of
Unicode). In simple terms, this mechanism allows for the indirect representation of arbitrary parts of
document (be they single characters, character strings, or whole files) within it. One obvious applicati
for this mechanism is to ensure consistency of nomenclature; another, more significant one, is to coul
the notorious inability of different computer systems to understand each other’s character sets, or of
one system to provide all the graphic characters needed for a particular application. The strings define
this string-substitution mechanism are cakgditiesand they are discussed below in sectfonEntities

2.2 Textual structure

March 2002

A text is not an undifferentiated sequence of words, much less of bytes. For different purposes, it m
be divided into many different units, of different types or sizes. A prose text such as this one might
divided into sections, chapters, paragraphs, and sentences. A verse text might be divided into car
stanzas, and lines. Once printed, sequences of prose and verse might be divided into volumes, gather
and pages.

Structural units of this kind are most often used to identify specific locations or reference points within
text (“the third sentence of the second paragraph in chapter ten”; “canto 10, line 1234”; “page 412,” et
but they may also be used to subdivide a text into meaningful fragments for analytic purposes (“is t
average sentence length of section 2 different from that of section 5?” “how many paragraphs sepal
each occurrence of the word ‘nature’?” “how many pages?”). Other structural units are more clea
analytic, in that they characterize a section of a text. A dramatic text might regard each speech b
different character as a unit of one kind, and stage directions or pieces of action as units of another ki
Such an analysis is less useful for locating parts of the text (“the 93rd speech by Horatio in Act 2”) the
for facilitating comparisons between the words used by one character and those of another, or those
by the same character at different points of the play.

In a prose text one might similarly wish to regard as units of different types passages in direct or indire
speech, passages employing different stylistic registers (narrative, polemic, commentary, argument, €
passages of different authorship and so forth. And for certain types of analysis (most notably textt
criticism) the physical appearance of one particular printed or manuscript source may be of importan
paradoxically, one may wish to use descriptive markup to describe presentational features such
typeface, line breaks, use of whitespace and so forth.

These textual structures overlap with each other in complex and unpredictable ways. Particularly wt
dealing with texts as instantiated by paper technology, the reader needs to be aware of both the phyzs
organization of the book and the logical structure of the work it contains. Many great works (Sterne
Tristram Shandyor example) cannot be fully appreciated without an awareness of the interplay betwee
narrative units (such as chapters or paragraphs) and page divisions. For many types of research, it i

8 SeeExtensible Markup Language (XML) 1 8ection 2.2 Characters.
9 ISO/IEC 10646-199formation Technology — Universal Multiple-Octed Coded Characte(\3&8)
10 Seehttp://www.unicode.org/

15 TEI Consortium

2 A Gentle Introduction to XML

interplay between different levels of analysis which is crucial: the extent to which syntactic structur
and narrative structure mesh, or fail to mesh, for example, or the extent to which phonological structul
reflect morphology.

2.3 XML structures

2.3.1 Elements

This section describes the simple and consistent mechanism for the markup or identification of text
structure provided by XML. It also describes the methods XML provides for the expression of rule
defining how units of textual structure can meaningfully be combined in a text.

The technical term used in XML for a textual unit, viewed as a structural componetenient Different
types of elements are given different names, but XML provides no way of expressing the meaning o
particular type of element, other than its relationship to other element types. Thatis, all one can say ab
an element called (for instanceplort> is that instances of it may (or may not) occur within elements
of type <fFarble>, and that it may (or may not) be decomposed into elements ofdgpertette>.

It should be stressed that XML is entirely unconcerned with the semantics of textual elements: the
are application dependent. It is up to the creators of XML vocabularies (such as these Guidelines)
choose intelligible names for the elements they identify and to define their proper use in text markt
That is the chief purpose of documents such as the TEI Guidelines. From the need to choose elen
names indicative of function comes the technical term for the name of an element type, widdkei
identifier, or Gl.

Within a marked up text (@ocument instangeeach element must be explicitly marked or tagged in
some way. This is done by inserting a tag at the beginning of the elemstdr(gag and another at

its end (arend-tag.* The start- and end-tag pair are used to bracket off the element occurrences with
the running text, in rather the same way as different types of parentheses or quotation marks are use
conventional punctuation. For example, a quotation element in a text might be tagged as follows:

. Rosalind"s remarks <quote>This is the silliest stuff
that ere 1 heard of!</quote> clearly indicate ...

As this example shows, a start-tag takes the fetmote>, where the opening angle bracket indicates
the start of the start-tag, “quote” is the generic identifier of the element which is being delimited, ar
the closing angle bracket indicates the end of a tag. An end-tag takes an identical form, except that
opening angle bracket is followed by a solidus (slash) character, so that the corresponding end-ta
</quote>.1?

2.3.2 Content models: an example

TEI Consortium

An element may bempty that is, it may have no content at all, or it may contain just a sequence
of characters with no other elements. More usually, however, elements of one type eitilizxded
(contained entirely) within elements of a different type.

To illustrate this, we will consider a very simple structural model. Let us assume that we wish to identi
within an anthology only poems, their titles, and the stanzas and lines of which they are composed.
XML terms, ourdocument typés theanthology and it consists of a series pbens. Each poem has
embedded within it one elementtide, and several occurrences of anothestanza each stanza having
embedded within it a number @he elements. Fully marked up, a text conforming to this model might
appear as follows:

M In SGML (but not in XML) the name and the content model may be separated by an additional part of the declaration whi
specifies ‘omission rules’ for the element concerned. These rules state whether or not start- and end-tags must be present for «
occurrence of the element concerned: as noted above, such tag omission is not permitted in XML, and is not permitted in the |
Interchange format.

2 Because the opening angle bracket has this special function in an XML document, special steps must be taken to use
character for other purposes (for example, as the mathematical less-than operator); se@.iugtketity referencesin SGML

(but not XML) different characters may be defined for use as any of the delimiting characters (the angle brackets, exclamation mr
and solidus).

13 The example is taken from William BlakeSongs of innocence and experielft@94). The markup is designed for illustrative
purposes and is not TEl-conformant.

16 March 2002

March 2002

2.3 XML structures

<anthology>
<poem><title>The SICK ROSE</title>
<stanza>
<line>0 Rose thou art sick.</line>
<line>The invisible worm,</line>
<line>That flies in the night</line>
<line>In the howling storm:</line>
</stanza>
<stanza>
<line>Has found out thy bed</line>
<line>0F crimson joy:</line>
<line>And his dark secret love</line>
<line>Does thy life destroy.</line>
</stanza>
</poem>
<!-- more poems go here -=>
</anthology>

It should be stressed that this example doesuse the same names as are proposed for corresponding
elements elsewhere in these Guidelines: the abowetia valid TEI document. It will however serve as
an introduction to the basic notions of XML. Whitespace and line breaks have been added to the exam
for the sake of visual clarity only; they have no particular significance in the XML encoding itself. Also
the line

<!-- more poems go here -=>
is an XML commengnd is not treated as part of the text.

As it stands, the above example is what is knownagkformedXML document: to achieve this status,
an XML document must obey the following simple rules:

e there should be a single element (start- and end- tag pair) which encloses the whole document
this is known as theoot elemen{<anthology> in our case);

e each element should be completely contained by the root element, or by an element which is
S0 contained; elements may not partially overlap one another;

e thetags marking the start and end of each element must always be ptesent.

An XML document which is well-formed can be processed in a number of useful ways. A simple
indexing program could extract only the relevant text elements in order to make a list of titles, first line
or words used in the poem text; a simple formatting program could insert blank lines between stanz
perhaps indenting the first line of each, or inserting a stanza number. Different parts of each poem co
be typeset in different ways. A more ambitious analytic program could relate the use of punctuation mau
to stanzaic and metrical divisioffsScholars wishing to see the implications of changing the stanza or
line divisions chosen by the editor of this poem can do so simply by altering the position of the tags. Ar
of course, the text as presented above can be transported from one computer to another and process
any program (or person) capable of making sense of the tags embedded within it with no need for the ¢
of transformations and translations needed to move word processor files around.

However, well-formedness alone is not enough for the full range of what might be useful in marking up
document. It might well be useful if, in the process of preparing our digital anthology, a computer syste
could check some basic rules about how stanzas, lines, and titles can sensibly co-occur in a docurr
It would be even more useful if the system could check that stanzas are always |lalsebeda> and

not occasionallyxcanto> or <Stanza>. An XML document in which such rules have been checked
is technically known as &alid document, and the ability to perform such validation is one of the key
advantages of using XML. To carry this out, some way of formally stating the criteria for successft

14 This is not strictly true for empty elements, for which start- and end-tags can be combined, as further discussed below.
15 Note that this simple example has not addressed the problem of marking elements such as sentences explicitly; the implicat
of this are discussed below in sectidb Complicating the issue

17 TEI Consortium

2 A Gentle Introduction to XML

validation is necessary: in XML this formal statement may be provided by an additional document know
as adocument type declaratiaidTD) or by anXML schema®

2.4 Validating a document’s structure

Rules such as those informally stated above are the first stage in the creation of a formal specification
the structure of an XML document, document type declaratioansually abbreviated toTD. In creating

a DTD, the document designer may be as lax or as restrictive as the occasion warrants. A balance r
be struck between the convenience of following simple rules and the complexity of handling real tex
This is particularly the case when the rules being defined relate to texts which already exist: the desig
may have only the haziest of notions as to an ancient text’s original purpose or meaning and hence f
it very difficult to specify consistent rules about its structure. On the other hand, where a new text
being prepared to an exact specification, for example for entry into a textual database of some kind,
more precisely stated the rules, the better they can be enforced. Even in the case where an existing
is being marked up, it may be beneficial to define a restrictive set of rules relating to one particular vie
or hypothesis about the text — if only as a means of testing the usefulness of that view or hypothesis
is important to remember that every document type declaration results from an interpretation of a te
There is no single DTD which encompasses any kind of absolute truth about a text, although it may
convenient to privilege some DTDs above others for particular types of analysis.

XML is widely used in environments where uniformity of document structure is a major desideratun
In the production of technical documentation, for example, it is of major importance that sections ar
subsections should be properly nested, that cross references should be properly resolved and so f
In such situations, documents are seen as raw material to match against pre-defined sets of rules.
discussed above, however, the use of simple rules can also greatly simplify the task of tagging accura
elements of less rigidly constrained texts. By making these rules explicit, the scholar reduces his or |
own burdens in marking up and verifying the electronic text, while also being forced to make explicit a
interpretation of the structure and significant particularities of the text being encoded.

2.4.1 An example DTD
A DTD is expressed as a set of declarative statements, using a special purpose syntax which we introc
informally below. For our simple model of a poem, the following declarations would be appropriate:

<IELEMENT anthology (poem+)>
<IELEMENT poem (title?, stanza+)>
<IELEMENT title (#PCDATA) >
<IELEMENT stanza (line+) >
<IELEMENT line (#PCDATA) >

These five lines are examples of formal XML element declarations. A declaration, like an element,
delimited by angle brackets; the first character following the opening bracket must be an exclamati
mark, followed immediately by one of a small set of XML-defined keywords, specifying the kind of
object being declared. The five declarations above are all of the same type: each beginsswiheam
keyword, indicating that it declares an element, in the technical sense defined above. Each consist
two parts: a name, ageneric identifierand acontent model Each of these parts is discussed further
below. Components of the declaration are separatedhitgspaceharacters, that is one or more blanks,
tabs or newlines.

2.4.2 Generic identifier
The first part of each declaration above gives the generic identifier (often abbreviated to Gl) of the elem
which is being declared, for example ‘poem’, ‘title’, etc. A Gl may contain alphabetic characters, digits

6 The DTD language described in the remainder of this section is neither the only way of representing such criteria, r
the most powerful. One important alternative is provided by another W3C Recommendation: the XML Schema langua
(http://www.w3.0org/XML/Schema); another is provided by the OASIS Committee’s specification for Relax NGp(://

www . oasis-open.org/committees/relax-ng/). It is highly probable that future releases of these Guidelines will use such
a language, in preference to, or as well as, a DTD.

7 1n SGML (but not in XML) the name and the content model are separated by an additional part of the declaration which specif
minimization rulesfor the element concerned. Minimization (informally speaking, whether or not start- and end-tags must b
present in every occurrence of the element concerned) is not permitted in XML, and is not recommended in the TEI Interchau
format.

TEI Consortium 18 March 2002

2.4 Validating a document’s structure

hyphens, underscore characters, or fullstops, and must begin with a letter. In general, uppercase
lowercase letters are regarded as distinct characters: an element with #ffedSlis not the same as

an element with the GFoo>: the root element of a TEl-conformant document is thUEI .2>, not
<tei.2>?

2.4.3 Content model

The second part of each declaration, enclosed in parentheses, is calbedtiet modedf the element
being defined, because it specifies what may legitimately be contained within it. Contents are specif
either in terms of other elements or using special reserved words. There are several such reserved wq
of which by far the most commonly encountere@d®<DATA, as in this example. This is an abbreviation
for parsed character datand it means that the element being defined may contain any valid characte
data (but no elements). If an XML declaration is thought of as a structure like a family tree, with
single ancestor at the top (in our case, this wouléðology>), then almost always, following the
branches of the tree downwards (for example, framthology> to <poem> to <stanza> to <line>
and<title>) will lead eventually to#PCDATA. In our examplextitle> and<line> are so defined,
since their content models sayCDATA only and name no embedded elements.

2.4.4 Occurrence indicators

The declaration foestanza> in the example above states that a stanza consists of one or more lines.
uses aroccurrence indicatofthe plus sign) to indicate how many times the element named in its conten
model may occur. There are three occurrence indicators: the plus sign, the question mark, and the ast
or star. The plus sign means that there may be one or more occurrences of the element concerned
guestion mark means that there may be at most one and possibly no occurrence; the star means the
element concerned may either be absent or appear one or more times. Thus, if the content mode!
<stanza> were (1ine*), stanzas with no lines would be possible as well as those with more than on
line. If it were (1ine?), again empty stanzas would be countenanced, but no stanza could have mc
than a single line. The declaration fepoem> in the example above thus states thaipaem> cannot
have more than one title, but may have none, and that it must have at leasttanea> and may have
several.

2.4.5 Connectors

The content modgftitle?, stanza+) contains more than one component, and thus needs additionally
to specify the order in which these elementzi(tle> and <stanza>) may appear. This ordering

is determined by the€onnector(the comma) used between its components. There are two possibl
connectors: the comma, representing sequence, and the vertical bar, representing alteth#tien.
comma in this example were replaced by a vertical bar, thewoam> would consist of either a title or
just stanzas — but not both!

2.4.6 Model groups

March 2002

In our example so far, the components of each content model have been either single elements
#PCDATA. It is quite permissible however to define content models in which the components are lis
of elements, combined by connectors. Such lists, knowmedel groups may also be modified by
occurrence indicators and themselves combined by connectors. To demonstrate these facilities, le
now expand our example to include non-stanzaic types of verse. For the sake of demonstration, we
categorize poems as onesténzaic¢ couplets or blank (or stichic). A blank-verse poem consists simply

of lines (we ignore the possibility of verse paragraphs for the moieatho additional elements need
be defined for it. A couplet is defined asfirstLine> followed by a<secondLine>.

8 In XML, a single colon may also appear in a Gl, where it has a special significance related to thenseespacesas
further discussed in sectidh9.2NamespacesThe characters defined by Unicodecasnbining characterand asextendersre

also permitted. In SGML, the rules stated informally here may vary somewhat depending on the SGML declaration in force;
particular, it is not usually the case that upper and lower case letters are distinguished, although such usage is highly recomme
for TEI Interchange. The present version of the Guidelines does not mandate this, for compatibility reasons, but this is likely
change in a subsequent release.

19 In SGML (but not XML), a third connector, the ampersand, is sometimes used, signifying that the components connected b
may appear in either order. Its use is not supported (or recommended) by the TEI interchange format of SGML.

201t will not have escaped the astute reader that the fact that verse paragraphs need not start on a line boundary seriously compli
the issue; see further secti@rb Complicating the issue

19 TEI Consortium

2 A Gentle Introduction to XML

TEI Consortium

<IELEMENT couplet (firstLine, secondLine) >

The elementsfirstLine> and <secondLine> (which are distinguished to enable studies of rhyme
scheme, for example) have exactly the same content model as the exiktimg> element we will
therefore add the following two lines to our example DTD:

<IELEMENT firstLine (#PCDATA)>
<IELEMENT secondLine (#PCDATA)>

Next, we can change the declaration for #peem> element to include all three possibilities:
<IELEMENT poem (title?, (stanza+ | couplet+ | line+)) >

Thatis, a poem consists of an optional title, followed by one or several stanzas, or one or several coupl
or one or several lines. Note the difference between this declaration and the following:
<IELEMENT poem (title?, (stanza | couplet | line)+) >

The second version, by applying the occurrence indicator to the group rather than to each element wit
it, would allow for a single poem to contain a mixture of stanzas, couplets, or lines.

A model group can contai#PCDATA as well as named elements: this combination, knowmasd
content allows for elements in which the sub-components appear with intervening stretches of charac
data. For example, if we wished to mark place names wherever they appear inside our verse lir
then, assuming we have also added a suitable declaration fenshe> element, we could change the
definition for<line> to

<VELEMENT line (#PCDATA | name)* >

XML (but not SGML) places several constraints on the way that mixed content models may be define
In brief, if #PCDATA appears with other elements in a content model: it must always appear as the fir
option in an alternation; it may appear once only, and in the outermost model group; and if the groi
containing it is repeated, the star operator must be #ised.

Quite complex models can easily be built up in this way, to match the structural complexity of many type
of text. As a further example, consider the case of stanzaic verse in which a refrain or chorus appe:
Like a stanza, a refrain consists of repetitions of the line element. A refrain can appear at the start c
poem only, or as an optional addition following each stanza. This could be expressed by a content mo
such as the following:

<IELEMENT refrain (linet+)>

<IELEMENT poem (title?, (line+ | (refrain?, (stanza, refrain?)+))) >
That is, a poem consists of an optional title, followed by either a sequence of lines, or an un-nam
group, which starts with an optional refrain, followed by one of more occurrences of another grou
each member of which is composed of a stanza followed by an optional refrain. A sequence such
‘refrain - stanza - stanza - refrain’ follows this pattern, as does the sequence ‘stanza - refrain - stanz
refrain’. The sequence ‘refrain - refrain - stanza - stanza’ does not, however, and neither does the sequ
“stanza - refrain - refrain - stanza.” Among other conditions made explicit by this content model are tt
requirements that at least one stanza must appear in a poem, if it is not composed simply of lines,
that if there is both a title and a stanza they must appear in that order.

Note that the apparent complexity of this model derives from the constraints expressed informally abo
A simpler model, such as

<IELEMENT poem (title?, (line|refrain]stanza)+) >
would not enforce any of them, and would therefore permit such anomalies as a poem consisting only
refrains, or an arbitrary mixture of lines and refrains.

2L In SGML, but not XML, it is possible to use a group of names instead of a single GI within an element declaration, so the thre
declarations could be combined like this:

<IELEMENT (line]firstLine|secondLine) O O (#PCDATA)>

This is not however supported by the TEI Interchange Format.
2 The (good) rationale for these restrictions is beyond the scope of this tutorial, as are the consequences of attempting to e\
them. The TEI content models all obey these constraints.

20 March 2002

2.5 Complicating the issue

2.5 Complicating the issue

March 2002

In the simple cases described so far, it has been assumed that one can identify the immediate constitt
of every element in a textual structure. A poem consists of stanzas, and an anthology consists of poe
Stanzas do not float around unattached to poems or combined into some other unrelated elemer
poem cannot contain an anthology. All the elements of a given document type may be arranged il
a hierarchic structure, arranged like a family tree with a single ancestor at one end and many child
(mostly the elements containimgPCDATA) at the other. For example, we could represent an anthology
containing two poems, the first of which contains two four-line stanzas and the second a single stanza
a tree structure like the following figure:

— poem|1

athology |—

» poem?2

Figure 1.

Clearly, there are many such trees that might be drawn to describe the structure of this or otf
anthologies. Some of them might be representable as further subdivisions of this tree: for examg
we might subdivide the lines into individual words, since no word crosses a line boundary. Surprising
perhaps, this grossly simplified view of what text is (memorably termeat@ered hierarchy of content
objects(OHCO) view of text by Reneagt al)® turns out to be very effective for a large number of
purposes. It is not however adequate for the full complexity of real textual structures, for which moi
complex mechanisms need to be employed. For there are many other trees that might be drawn wi
do not fit within this tree. We might, for example, be interested in syntactic structures — which rarely
respect the formal boundaries of verse. Or, to take a simpler example, we might want to represent
pagination of different editions of the same text.

In the OHCO model of text, representation of cases where different elements overlap so that seve
different trees may be identified in the same document, is generally problematic. A single hierarcl
must be chosen, and the points at which other hierarchies intersect with it marked (so we might, 1
example, mark the pagination by means of empty elements marking the boundary between one page
the next). Or we could represent alternative hierarchies by means of the pointing and linking mechanis

% See Renear, A., Mylonas, E., Durand,Refining our notion of what text really is: the problem of overlapping hierardhi¢de
and Hockey, edsResearch in Humanities Computif@UP, 1996

21 TEI Consortium

2 A Gentle Introduction to XML

described in chapter4 Linking, Segmentation, and Alignmefihese mechanisms all depend on the use
of attributeswhich may be used both to identify particular elements within a document, and to point tc
link, or align them into arbitrary structures.

2.6 Attributes

In the XML context, the word ‘attribute’, like some other words, has a specific technical sense. It i
used to describe information which is in some sense descriptive of a specific element occurrence but
regarded as part of its content. For example, you might wish to adet@s attribute to occurrences of
some elements in a document to indicate their degree of reliability, or to adtt@tifier attribute so
that you could refer to particular element occurrences from elsewhere within a document. Attributes
useful in precisely such circumstances.

Although different elements may have attributes with the same name, (for example, in the TEI schen
every element is defined as having an attribute nalmeg), they are always regarded as different, and
may have different values assigned to them. If an element has been defined as having attributes,
attribute values are supplied in the document instancattabute-value pairsinside the start-tag for
the element occurrence. An end-tag may not contain an attribute-value specification, since it would
redundant.

The order in which attribute-value pairs are supplied inside a tag has no significance; they must howe
be separated by at least one whitespace (blank, newline, or tab) character. In XML, the value part m
always be given inside matching quotation marks, either single or déuble.

For example:

<poem id="P1" status="draft"> ... </poem>

Here attribute values are being specified for two attributes previously declared fqudre> element:id
andstatus. For the instance of apoem> in this example, represented here by an ellipsisjdtagtribute

has the valu@1 and thestatus attribute has the valugraft. An XML processor can use the values of
the attributes in any way it chooses; for example, a formatter might print a poem element which has t
status attribute set tdraft in a different way from one with the same attribute setd¢oised; another
processor might use the same attribute to determine whether or not poem elements are to be process
all. Theid attribute is a slightly special case in that, by convention, it is always used to supply a unigt
value to identify a particular element occurrence, which may be used for cross reference purposes
discussed further below.

2.6.1 Declaring attributes
Like elements, attributes are declared in the XML DTD, using rather similar syntax. As well as specifyin
its name and the element to which it is to be attached, it is possible to specify (within limits) what kin
of value is acceptable for an attribute and a default value.

The following declarations could be used to define the two attributes we have supplied above for t
<poem> element:
<IATTLIST poem

id 1D #IMPLIED

status (draft | revised | published) “draft"” >
The declaration begins with the symbatTLIST, which introduces aattribute list specification This
first specifies the element concerngdem in this example® Following this name is a series of rows, one
for each attribute being declared, each containing three partsese specify the name of the attribute,
the type of value it takes, and a default value respectively.

24 SGML (but not XML) provides a mechanism to define ‘concurrent’ document structures, which is discussed in 8hapter
Multiple Hierarchiesbelow; however, this is not widely implemented, and is not further discussed here.
% In SGML, the quotation marks may be omitted in certain circumstances; however their use is required by the TEI interchan

format.
% As with content models, it is possible in SGML (but not in XML) to combine several attribute specifications together in a singl

declaration by supplying a list of element names instead of a single name; this is not however done in the current version of the |

DTDs.
2" These parts are conventionally lined up in rows for human readability; the parser only requires that there be some kind

whitespace between them.

TEI Consortium 22 March 2002

2.6 Attributes

2.6.2 Attribute names

Attribute namesi@l andstatus in this example) are subject to the same restrictions as other names i
XML; they need not be unigue across the whole DTD, however, but only within the list of attributes fo
a given element.

2.6.3 Attribute values

The second part of an attribute specification can take one of two forms, both illustrated above. The fi
case uses one of a number of special keywords to declare what kind of value an attribute may take.
the example above, the special keywaerdis used to indicate that the attribuitewill be used to supply

a unique identifying value for each poem instance (see further the discussto®.5D and IDREF
attributesbelow). Possible keywords include:

e CDATA: the attribute value may contain any valid character data, including spaces or punctu-
ation marks; even tags may be included in the value, but they will not be recognized by the
XML parser, and will not be processed as tags normally are;

e NMTOKEN: the attribute value must contain only those characters that are valid within a name
or a generic identifier.

e NMTOKENS: the attribute value must contain one or m8KIOKEN values separated by one or
more whitespace characters.

e ID: the attribute value must be a single word starting with an alphabetic character, which can
be used as a unique identifier (i.e. a given value can only be used once as the value for any
attribute);

e IDREF: The attribute value must contain a single word, which has been used as a unique
identifier on some other element;

e IDREFS: The attribute value must contain one or meb&EF values, separated by one or more
whitespace characters;

e ENTITY: The attribute value must contaim®TOKEN value which has previously been declared
to be the name of some XMéntity (2.7 Entities.

e ENTITIES: The attribute value must contain one or marg ITY values, separated by one or
more whitespace characters.

In the example above, a list of the possible values fosthtus attribute has been supplied. This means
that a parser can check that apoem> is defined for which theatatus attribute does not have one of
draft, revised, Or published as its value. Alternatively, a parser would have accepted almost any
unbroken string of characterstiatus=""awful', status="awe-ful", Or status="12345678") if it

had been alMTOKEN; or almost any string at allsatus="anything goes" or status = "well,
ALMOST anything") if it were CDATA. Sometimes, of course, the set of possible values cannot be pre
defined. Where it can, as in this case, it is generally better to do so.

2.6.4 Default value

March 2002

The last piece of information in each attribute declaration specifies how a parser should interpret 1
absence of the attribute concerned. This can be done by supplying one of the special keywords lis
below, or (as in this case) by supplying a specific value which is then regarded as the value for ewve
element which does not supply a value for the attribute concerned. Using the example above, if a po
is simply taggedkpoem>, the parser will treat it exactly as if it were taggegbem status="draft'>.
Alternatively, one of the following keywords may be used to specify a default value for an attribute:

e #REQUIRED: a value must be specified;
e #IMPLIED: value need not be supplied.

Thus, if the attribute declaration above were rewritten as

<IATTLIST poem id ID #IMPLIED
status (draft | revised | published) #REQUIRED >

then poems which appear in the anthology simply taggeskm> would be reported as erroneously
tagged, as would any for which some value other tihexft, published, or revised were supplied.

23 TEI Consortium

2 A Gentle Introduction to XML

2.6.51D and IDREF attributes

Itis sometimes necessary to refer to an occurrence of one textual element from within another, an obvi
example being phrases such as “see note 6” or “as discussed in chapter 5.” When a text is being prodt
the actual numbers associated with the notes or chapters may not be certain. If we are using descrif
markup, such things as page or chapter numbers, being entirely matters of presentation, will not in ¢
case be present in the marked up text: they will be assigned by whatever processor is operating on
text (and may indeed differ in different applications). XML therefore provides a special mechanism &
which any element occurrence may be given a special identifier, a kind of label, which may be used
refer to it from anywhere else within the same text. The cross-reference itself is regarded as an elemnr
occurrence of a specific kind, which must also be declared in the DTD. In each case, the identifying lal
(which may be arbitrary) is supplied as the value of a special attribute.

Suppose, for example, we wish to include a reference within the notes on one poem that refers to ano
poem. We will first need to provide some way of attaching a label to each poem: this is done by definii
an attribute for thespoem> element, as suggested above.

<IATTLIST poem
id 1D #IMPLIED >

Here we define an attribute, the value of which must be of type. It is not required that any attribute
of type 1D have the nameal as well; it is however a useful convention almost universally observed. Note
that not every poem need carry @nattribute and the parser may safely ignore the lack of one in those
which do not. Only poems to which we intend to refer need use this attribute; for each such poem \
should now include in its start-tag some unique identifier, for example:
<poem id="ROSE">
<I-- Text of poem with identifier "ROSE" -->
</poem>
<poem id="P40">
<l-- Text of poem with identifier "P40" -->
</poem>
<poem>
<!-- This poem has no identifier -->
</poem>

Next we need to define a new element for the cross reference itself. This will not have any content — i
only a pointer — but it has an attribute, the value of which will be the identifier of the element pointed a
This is achieved by the following declarations:

<IELEMENT poemRef EMPTY >

<IATTLIST poemRef target IDREF #REQUIRED >
The <poemRef> element has the special content moel#TY because it has no content. It has a single
attribute callectarget. The value of this attribute must be of typeREF (the keyword used for cross
reference pointers of this type); furthermore, because the default vaiREQEIRED, it must be supplied
on each occurrence —@oemRef> with no referent is an impossibility.

With these declarations in force, we can now encode a reference to the poemidvatisbute specifies
that its identifier isRose as follows:

Blake"s poem on the sick rose

<poemRef target="Rose"/> ...
In this example, we have used the special syntax defined by XML for representing empty elements
which the end-tag and the start-tag are combined into a singté tag.

2 XML also permits representation of empty elements by an immediately adjacent start- and end-tag, thus
<poemRef target="Rose"></poemRef>

Neither form is by default permitted for elements declare@Mesy in an SGML context, for which empty elements should be
represented by a start-tag in isolation, unless the SGML declaration has been modified to permit the first XML style cited abo
Conversion of the way empty elements are represented is thus usually necessary when processing SGML legacy data in an
environment.

TEI Consortium 24 March 2002

2.7 Entities

2.6 Attributes

When an XML parser encounters this empty element it will simply check that an element exists wit
the identifierRose. Different XML processors could take any number of additional actions: a formatter
might construct an exact page and line reference for the location of the poem in the current document
insert it, or just quote the poem’s title or first lines. A hypertext style processor might use this eleme
as a signal to activate a link to the poem being referred to. The purpose of the XML markup is simply
indicate that a cross reference exists: it does not determine what the processor is to do with it.

The aspects of XML discussed so far are all concerned with the markup of structural elements withir
document. XML also provides a simple and flexible method of encoding and naming arbitrary parts
the actual content of a document in a portable way. In XML the vemtity has a special sense: it means

a named part of a marked up document, irrespective of any structural considerations. An entity might
a string of characters or a whole file of text. Entities are declared in a DTD in the same way as eleme
or attributes, and they are included in a document using a construction knowreastameference

2.7.1 Entity declarations

March 2002

Like all other declarations, an entity declaration begins with a special keyword, in this case the wo
ENTITY, followed by the name of the entity to be declared, and the value to be used when it is referenc
in the document. For example, the following declaration

<IENTITY tei "Text Encoding Initiative'>

defines an entity whose nametis and whose value is the strifgxt Encoding Initiative. This
is an instance of aentity declarationwhich declares amternal entity The following declaration, by
contrast, declares axternal entitysometimes called, looselysystem entify

<IENTITY ChapTwo SYSTEM "p4chap2.xml">

This defines an external entity whose nam&limpTwo and whose value is the text associated with
the system identifier — in this case, the system identifier is the name of an operating system file &
the replacement text of the entity is the contents of the file. However, XML does not require syste
identifiers to be operating-system file narfe¥/e might define the same entity as referring to a web
page:

<IENTITY ChapTwo SYSTEM

"http://www.tei-c.org/P4xX/p4chap2.xml*>

System identifiers are, by their nature, system dependent; in the interests of data portability, therefc
XML provides another way of declaring external entities, shown here:
<IENTITY p3.sg

PUBLIC *"-//TEL//TEXT Guidelines Chapter on XML//EN"
""p4chap2.xml">

Here, the keywordYSTEM has been replaced by the keywetBLIC, and the system identifier has been
preceded by a special string known asoamal public identifier Although public identifiers can (in
principle) take virtually any form; it is usual to use the form shown above, in which the delimiters ‘//’
divide the identifier into the following parts:

TEI indicates the owner of this public identifier (often but not necessarily the owner of the data in
guestion); the preceding ‘-’ signals that this particular owner identifier is not registered with
ISO (a ‘+’ would imply that one could find out the full name and address of the owner from
the official registry of owner identifiers)

TEXT is a keyword indicating the nature of the entity: other legal valuesbac®VENT (for
full XML documents),DTD (for document type declaration€), EMENTS (for sets of element
declarations)ENTITIES (for sets of entity declarationgypTATION (for notation definitions),
and a number of others which are less frequently needed and will not be discussed here.

2 In general, an external entity can be any data source available to the XML processor: files, results of database queries, resul
calls to system functions, web pages — anything at all. System identifiers can use any method to name an entity which the X
parser’s interface to its operating environment can use to elicit data from the environment.

25 TEI Consortium

2 A Gentle Introduction to XML

Guidelines Chapter on XML gives a descriptive name to the entity.
EN isthe ISO language code for the human language in which the entity is written.

Public identifiers help make XML documents less dependent on particular computer systems, by mak
it possible to confine the mapping between entity names and system identifiers to a single place.
with other such techniques, they require XML systems to provide mechanisms for mapping from tl
public identifiers to file identifiers or other system identifiers: such a mapping is typically provided by a
additional component known asatalog file(2.10.4Ancillary Files).

2.7.2 Entity references

Once an entity has been declared it may be referenced anywhere within a document. This is done
supplying its name prefixed with the ampersand character and followed by the serdicolon.

When an XML parser encounters suchearity referenceit immediately substitutes the value declared
for the entity name. Thus, the passage work of the &tei; has only just begun will be
interpreted by an XML processor exactly as if it ré&@ work of the Text Encoding Initiative

has only just begun. In the case of an external entity, it is, of course, the contents of the operating
system file which are substituted, so that the pas¥agefol lowing text has been suppressed:
&ChapTwo; will be expanded to include the whole of whatever the system finds in thedfileap2.xml.

This obviously saves typing, and simplifies the task of maintaining consistency in a set of documents.
the printing of a complex document is to be done at many sites, the document body itself might use
entity reference, such asite;, wherever the name of the site is required. Different entity declarations
could then be used at different sites to supply the appropriate string to be substituted for this name, w
no need to change the text of the document itself.

In XML documents, two special entities are predefined, with the namesandlt. These are available
without declaration, so that the ampersand character or less-than sign can be represented in a text wit
their being confused with the start of an entity reference or a tag respectively.

2.7.3 Character references

TEI Consortium

As mentioned above, XML documents all use the same internal character encoding. Since not
computer systems currently support this encoding directly, a special form of entity reference is defin
which can be used to represent individual characters from the Unicode character set in a portable way
simply representing their numeric value, in decimal or hexadecimal notation.

For example, the character € is represented within an XML document as the Unicode character w
hexadecimal valu®oE9. If such a document is being prepared on (or exported to) a system using
different character set, say ISO 646, in which this character is not available, it may instead be represer
by the character entity referen&&x00E9; (the x indicating that what follows is a hexadecimal value)
or é. Entity references of this type do not need to be predefined in XML, since the underlying
character encoding for XML is always the same.

To aid legibility however, it is common practice instead to use a mnemonic name (sucttwas:)

for such character references, and to map these to the appropriate Unicode value by means of el
declarations of exactly the same type as those already discussed. Standard mnemonic names have
defined by ISO for the characters in most widely-used writing systems, and grouped together into wide
availableentity sets The standard ‘ISO latl’ entity set, for example, includes a declaration like the
following for the character é:

<IENTITY eacute "é'> <I!-- LATIN SMALL LETTER E WITH ACUTE -->

so that, for an XML document which embeds this entity set in its DTD, a non-Unicode enabled inpt
system may also represent this character by the entity refegencete;.

This string substitutiormechanism has many other applications. Suppose, for example, that we wish
encode the use of ligatures in early printed texts. The ligatured form of ‘ct’ might be distinguished fror
the non-ligatured form by encoding itastlig; rather tharct. Other special typographic features such

30 In SGML (but not XML) the semicolon may be omitted if the entity reference is followed by whitespace; this is not recommende
practice, and may be prohibited in future revisions of these Guidelines.

26 March 2002

2.7 Entities

as leafstops or rules could equally well be represented by mnemonic entity references in the text. Wi
processing such texts, an entity declaration would be added giving the desired representation for s
textual elements. If, for example, ligatured letters are of no interest, we would simply add a declaratit
such as

<IENTITY ctlig "ct" >
and the distinction present in the source document would be removed. If, on the other hand, a formatt

program capable of representing ligatured characters is to be used, we might replace the entity declare
to give whatever sequence of characters such a program requires as the expansion.

More detailed discussion of this and related character encoding issues is provided in4hapiguages
and Character Sets

2.7.4 Unparsed entities and Notations

An XML entity may contain non-textual information such as pictures, video, or sound in digitized form
Such objects can be embedded in a document by reference in exactly the same way as any other ext
entity. When such entities are declared, however, it is essential to indicate that they contain data wh
an XML parser or processor cannot handle in the same way as the surrounding data — it is no use try
to process entities contain pictures or sound as if they contain text! This is accomplished by including
additional keyword in the declaration of such entities, as in the following example:

<IENTITY figl SYSTEM "figurel.png" NDATA png>

The keywordNDATA indicates that this external entity imparsed it contains non-XML data which

an XML parser should ignore. It is followed by an additional nameg(in the example above) which
identifies thenotationused for this data, that is, the set of conventions which a processor must understal
in order to process the data correctly. XML may itself be thought of as a notation, which is implied fo
all external entities not otherwise labelled. Notations should be declared in a DTD along with everythir
else: for the DTD in which the above declaration appears, a notation declaration like the following wou
also be appropriate:

<INOTATION png PUBLIC
"-//TEL1//NOTATION IETF RFC2083 Portable Network Graphics//EN">

This gives a formal public identifier for the place where the notagiagis defined.

More detailed discussion of external unparsed entities and of recommended graphics notations are g
in section22.3Specific Elements for Graphic Images

2.7.5 Parameter entities

March 2002

A special form of entitiesparameter entitieanay be used within XML markup declarations; these differ
from the entities discussed above (which technically are knovgeasral entitiesin two ways:

e Parameter entities are usewly within XML markup declarations; they may not appear within
the document itself.

e Parameter entity references are delimited by percent sign and semicolon, rather than by
ampersand and semicolon.

Declarations for parameter entities take the same form as those for general entities, but insert a per
sign between the keywolNTITY and the name of the entity itself. Whitespace characters (blanks, tabs
or line breaks) must occur on both sides of the percent sign. For example, an internal parameter er
nameda.global might be declared with the expansiéd 1D #REQUIRED rend CDATA #IMPLIED as
follows:

<IENTITY % a.global
"id ID #REQUIRED rend CDATA #IMPLIED">

With this declaration at the start of a DTD, the task (for example) of declaring attributes consistently c
all elements within a DTD becomes much simpler: all that is needed is to reference the parameter ent
as in this example:

<IATTLIST myElement %a.global;
another CDATA #IMPLIED >

27 TEI Consortium

2 A Gentle Introduction to XML

since the attribute list foemyElement> will now be understood to contain whatever list of attribute
definitions was declared as the value for the parameter engigbal, followed by the definition for an
attribute callechnother.

Moreover, if we wish to change the global attributes or add another, all we need do is provide a ne
declaration fom.global in the DTD. We do not even need to modify the existing declaration, but simply
ensure that the new one precedes the old one in the DTD being processed. This is because of one
significant aspect of entity declarations not mentioned above: if a declaration is given for the same en
more than once, then only the first declaration is applicable. If, for example, an XML processor finds i
following:

<IENTITY switch "UP">

<I-- several other declarations -->

<IENTITY switch "DOWN'>

<IENTITY switch ""SIDEWAYS'>
<le— ... -

The switch is &switch;

then the entity reference at the end (assumed to be inside a document) will be resolved as the st
"UP" because that is the first declaration encountered. This rule applies equally to general entit
and parameter entities, and has important consequences for the TEI scheme. The TEI document:
declaration makes extensive use of parameter entities to control the selection of different tag sets an
make it easier to modify the TEI DTD. Numerous examples of their use may thus be found in ¢haptel
Structure of the TEI Document Type Definitidrney are also used to control the behaviour of conditional
marked sections, as further discussed in se@i8lLCDATA marked sectiobelow.

2.8 Marked sections

It is occasionally necessary to mark some portion of an XML document for special treatment. Within tt
body of a document, it is often convenient to be able to mark some portion as containing XML markt
which is to be ignored. Within a DTD, it is often convenient to mark certain parts to be included o
excluded in specific circumstances. To deal with the former situation, XML defines a construct known
a CDATA marked sectigrio deal with the latter, a syntactically similar construct known asraditional
marked sectiomay be used.

Most users of the TEI encoding scheme will never need to use marked sections, and may safely s
the remainder of this discussion. The TEI DTD makes extensive use of conditional marked sectiol
however, and this section should be read carefully by anyone wishing to follow in detail the discussio
in chapter3 Structure of the TEI Document Type Definition

2.8.1 CDATA marked section

TEI Consortium

A CDATA marked section is delimited by two rather arcane sequences of characters: its start is marl
by the string<! [CDATA[, and its end by the string]>. Note that spaces are not permitted within either
string.

Within a CDATA marked section any strings of characters which look like XML tags or entity reference:
will not be recognized as such by the XML parser: they are thus a very useful way of including exampl
of XML tagging within a document itself written in XML. For example:
<p>The <gi>term</gi> element may be used to mark any

technical term:

<eg><![CDATAL

This <term>recursion</term> is giving me a headache.

11></eg></p>
In this extract from a document describing the way that an XML element catiech> may be used, the
cited example (tagged with<eg> element) includes an instance of theerm> element which will not
be recognised as such, but simply as a string of characters, because it is contained by a marked secti

A similar effect can be achieved by simply replacing the angle brackets by entity references, but tl
makes the text somewhat unreadable in its native XML form if the example is of any length:

28 March 2002

2.8 Marked sections

<p>The <gi>term</gi> element may be used to mark any
technical term:
<eg>
This <term>recursion</term> is giving me a headache.
</eg></p>

2.8.2 Conditional marked section

March 2002

The CDATA marked section is a special case of the more gemeazked sectiorronstruct provided by
SGML. The conditional marked section is another instance of its use. Within the body of a DTD (bt
not within the body of a documer®)iwo other kinds of marked section are possible1@rORE marked
section, and anNCLUDE marked section. As the names suggest, material withinGAIORE marked
section is ignored during processing, while material withinl&agLUDE marked section is included.
These can be used to include and exclude portions of a DTD selectively, so as to adjust it to relev.
circumstances.

Suppose, for example, that we want to allow for poems which contain either only stanzas, or on
couplets. A content model to enforce this rule is easy to define, but it does require us to to decle
both possibilities — we must provide declarations for batlanza> and<line> elements, even though

in a given document we know that only one will appear. An alternative approach might be to provide tw
different declarations fotpoem>, as follows:

<I[INCLUDEL
<IELEMENT poem (stanza+)>
<IELEMENT stanza (line+)>

11>
<I[IGNORE[
<IELEMENT poem (couplet+)>
<IELEMENT couplet (line,line)>
11>
The first declaration here will be the one used, since it is withimNoL.UDE marked section. The second
one will be ignored. To swap around, we chan@eLUDE to 1GNORE, and vice-versa.

The literal keyworddNCLUDE and IGNORE, however, are not much use in adjusting a DTD or a document
to a user’s requirements. If modifying a DTD to match user requirements involves editing the te:
manually (changindlGNORE to INCLUDE as appropriate), it is probably just as easy to add or delete
the affected parts of the DTD directly. However, th&NORE and INCLUDE keywords need not be given

as literal values; they can also be represented by a parameter entity reference.

In the following example, we have replaced the keywords by references to two parameter entities:

<I[%stanzas;[
<IELEMENT poem (stanza+)>
<IELEMENT stanza (line+)>
<IENTITY couplets "IGNORE'>

11>

<I[%couplets;[
<IELEMENT poem (couplet+)>
<IELEMENT couplet (line,line)>
11>
The exact meaning of this will depend on the values of the parameter esititieas andcouplets when
the DTD is processed. When parameter entities are used in this way to control marked sections in a D’
the DTD file must contain default declarations for them. If the user wishes to override any of the defaul
all that needs to be done is to supply a new declaration and ensure that it will be processed before
existing default. The easiest way of doing this is to supply it within a special part of the DTD known a
theDTD subset?
31 This restriction does not apply to SGML documents, which may employ conditional marked sections within the docume
instance. Such usage is not recommended where XML/SGML compatibility is a consideration.
%2 This is explained in more detail in secti@0.2The DOCTYPE declaratiohelow; the key point for our present purposes is

that declarations in the DTD subset are always read before those in the external DTD file, and, as mentioned above2irt gection
Parameter entitiesthe first declaration of a given entity is the one which counts.

29 TEI Consortium

2 A Gentle Introduction to XML

With the following default declarations, poems will consist only of stanzas and the second set
declarations will be ignored:
<IENTITY % stanzas " INCLUDE">
<I[%stanzas;[
<IELEMENT poem (stanza+)>
<IELEMENT stanza (line+)>
<IENTITY % couplets "IGNORE">
11>

<IENTITY % couplets "INCLUDE">
<I[%couplets;[
<IELEMENT poem (couplet+)>
<IELEMENT couplet (line,line)>
11>
This works because, although there are two declarations for the parametecemtitts, only the first
is effective. It declares the parameter entityiplets to have the valudGNORE, and so the declarations
within the second conditional marked section are ignored. Suppose however that a declarsitimador
giving it the valuelGNORE were processed before this part of the DTD. In that event, only the seconc
declaration for the entitgouplets would be effective, since all the declarations within the conditional
marked section governed byanzas would be ignored.

Variations on this technique are used to control how the various parts of a TEI DTD are constructed. F
example:

<IENTITY % TEl.prose "INCLUDE">
<IENTITY % TEl.extensions.dtd SYSTEM "mystuff.dtd">

These declarations have two effects: they activate a section of the DTD containing declarations relevar
prose and they add into the DTD whatever additional declarations are held in the extermwgdffilé.dtd.

In the standard DTD files, there is a marked section controlled by the parameterTdfitityose, the
default value of which i9GNORE, and there is also a reference to the parameter enfityextensions.dtd,

the default value for which is the null string. The declarations cited above over-ride both these defaul
the declarations within the marked section controlled by the parameter @itityrose are thus made
active; and the reference to thé&l.extensions.dtd parameter entity is replaced by the content of the file
mystuff.dtd.

2.9 Other components of an XML document

In addition to the elements and entities so far discussed, an XML document can contain a few ott
formally distinct things. An XML document may contain arbitrary signals or flags for use when the
document is processed in a particular way by some class of processor: a common example in docun
production is the need to force a formatter to start a new page at some specific point in a document: s
flags are callegrocessing instructionsAn XML document may also contain instances of elements which
are defined in some other DTD than the one declared boit3YPE declaration, or (more generally) from
some othenamespace

2.9.1 Processing instructions

TEI Consortium

Although one of the aims of using XML is to remove any information specific to the processing o
a document from the document itself, it is occasionally very convenient to be able to include suc
information — if only so that it can be clearly distinguished from the structure of the document. A:
suggested above, one common example is the need, when processing an XML document for prir
output, to include a suggestion that the formatting processor might use to determine where to beginar
page of output. Page-breaking decisions are usually best made by the formatting engine alone, but tl
will always be occasions when it may be necessary to over-ride these. An XML processing instructic
inserted into the document is one very simple and effective way of doing this without interfering witl
other aspects of the markup.

Here is an example XML processing instruction:

<?tex \newpage ?>

30 March 2002

2.9 Other components of an XML document

It begins with<? and ends wittp>. In between are two space-separated strings: by convention, the firsti
the name of some processaek in the above example) and the second is some data intended for the us
of that processor (in this case, the instruction to start a new page). The only constraint placed by XN
on the strings is that the first one must be a valid XML name; the other can be any arbitrary sequence
characters, not including the closing character-sequesce

2.9.2 Namespaces

March 2002

A valid XML document necessarily specifies the DTD in which its constituent elements are define
However, a well-formed XML document is not required to specify its DTD — indeed, it may not ever
have a DTD; it would still be useful to indicate that the element names used in it have some defin
provenance. Furthermore, it might be desirable to include in a document elements which are defir
(possibly differently) in different DTDs. A cabinet-maker's DTD might well define an element called
<table> with very different characteristics from those of a documentalist’s.

The concept oihamespaceavas introduced into the XML language as a means of addressing thes
and related problems. If an XML document is thought of as an expression in some language, thel
namespace may be thought of as analogous to the lexicon of that language. Just as a document
contain words taken from different languages, so a well-formed XML document can include elemen
taken from different namespaces. Note however that because a document can only specify a single D
elements which belong to namespaces other than that defined by the DTD will appear to be illegal t
simple XML validator: documents which use namespaces require special handling by such process
Like a DTD, a namespace contains a list of valid element names; unlike a DTD, a namespace also h:
distinctiveprefixand an identifyingname

Suppose for example that we wish to extend our simple verse DTD to include markup of wordcla
information such as ‘noun’, ‘verb’, etc. Suppose further that a DTD already exists in which all the tag
we wish to use have been defined. We could (of course) simply combine the two DTDs to form a new ol
but this may not be practicable: for example, there might be an element defined with the same name
different meanings in each DTD. Instead, we supplyphefix associated with the grammatical DTD’s
namespaceagfam, for example) on each element which is taken from that namespace, as in the followin
example:

<line xmIns:gram="http://www.gram.org">
<gram:aux>Shal l</gram:aux>
<gram:pron>I</gram:pron>
<gram:verb>compare</gram:verb>
<gram:pron>thee</gram:pron>
<gram:prep>to</gram:prep>
<gram:art>a</gram:art>
<gram:noun>summer</gram:noun>
°s
<gram:noun>day</gram:noun>
?

</line>

In this example, the elementsaux>, <pron> etc. are understood to be taken from a namespace
namechttp://www.gram.org, which uses the prefigram, as indicated by the special purpose attribute
xmlins:gram. The elementline> (and the two untaggedPCDATA fragments it contains) however are
in no particular namespace. We could specify that they belong, by default, to the TEI nhamespace
supplying a default namespace declaration, as follows:

<line xmlns="http://www.tei-c.org"
xmIns:gram="http://www.gram.org">
<gram:aux>Shal lI</gram:aux>
<gram:pron>I</gram:pron>
<gram:verb>compare</gram:verb>
<gram:pron>thee</gram:pron>
<gram:prep>to</gram:prep>
<gram:art>a</gram:art>
<gram:noun>summer</gram:noun>
°s

31 TEI Consortium

2 A Gentle Introduction to XML

<gram:noun>day</gram:noun>
?

</line>

As shown here, an XML document may have one default namespace declaration, and also any nun
of other namespace declarations. The scope of a namespace declaration is the element on which
declared: in the example above, both the default TEI namespace and the additional gram namesy
apply to all elements in the document since they are declared on the root element. In the followil
example, the gram namespace is available only withinctiwely> element, while the TEI namespace
remains the default for the whole document:
<text xmlns="http://www._tei-c.org">
<front>
<I-- gram prefix not available here -->
</front>
<body xmlns:gram="http://www.gram.org">
<I-- gram prefix is available here -->
</body>
</text>

2.10 Putting it all together

An XML conformant document has a number of parts, not all of which have been discussed in th
chapter, and many of which the user of these Guidelines may safely ignore. For completeness,
following summary of how the parts are inter-related may however be found useful.

An XML document consists of grolog and adocument instance The prolog contains axXML
declaration (described below) and (optionally) @ocument type declaratiprwhich contains element
and entity declarations such as those described above. Different software systems may provide diffe
ways of associating the document instance with the prolog; in some cases, for example, the prolog r
be ‘hard-wired’ into the software used, so that it is completely invisible to the user.

2.10.1 SGML and XML declarations

As noted above, SGML allows for variation in several aspects of the dialect of SGML being used su
as the character set, the codes used for SGML delimiters, the length of identifiers, etc. These variati
are defined by a special additional document known asStB®IL Declarationprefixed to an SGML
document, implicitly or explicitly. Its content for TEI-conformant document types is discussed further ir
chapters39 Formal Grammar for the TEI-Interchange-Format Subset of S@Wil28 Conformance

All XML documents use the same SGML declaration, and it is therefore erroneous to supply one. Tl
only aspect of an XML document which may vary is the external character encoding used, which
specified by thesncoding parameter on an initiaKML declaration This looks syntactically like a
processing instructior2(9.1Processing instructions

<?xml version="1.0" encoding=""i1s0-8859-1"7>

but is generally regarded as a special kind of declaration. If supplied, the XML declaration must be t|
first thing found in an XML document. It can specify the version number of the XML Recommendatior
applicable to the document it introduces (in this case, version 1.0), and additionally the character encoc
used to represent the Unicode characters within it. In this case, the 16 bit characters of Unicode have k
mapped to the 8 bit character set known as ISO 8859-1; any characters present in the document buf
available in the target character set will be represented as character entity refeBeR@&SHharacter
references

2.10.2 ThedOCTYPE declaration

TEI Consortium

An XML file which is valid (as opposed to simply well-formed) must specify a DTD against which its
content is to be validated. This is the function of teeTYPE declaration.

The DOCTYPE declaration contains, following theOCTYPE keyword, at least two parts: the name of
the root element for the associated document, and a set of declarations for all the elements, attribu
notations, entities, etc. which together define the document type declaration (DTD) of that docume
Note, incidentally, that the root element name (and hencedbeyPE name) may be that of any element

32 March 2002

March 2002

2.10 Putting it all together

whose declaration is supplied in this set. The declarations may be supplied explicitly, or by reference
an external entity such as a file, or by a combination of the two.

Taking each of these possibilities in turn, we first presed@c YPE declaration in which the declarations
for all the elements, attributes, etc. required are given explicitly:

<IDOCTYPE myDoc [
<IELEMENT myDoc (p+) >
<IATTLIST myDoc n CDATA #IMPLIED>
<IELEMENT p (#PCDATA)>
1>
<myDoc n="1'>
<p>This is an instance of a "my.doc" document</p>
</myDoc>

Note that the required declarations are enclosed within square brackets insideteE declaration:
this part of the declaration is technically known as D subset

More usually, however, the required declarations will be held in a separate entity and invoked |
reference, as follows:

<IDOCTYPE myDoc SYSTEM "‘myDoc.dtd" []1>

<myDoc>
<p>This is another instance of a "myDoc" document.</p>
<p>It has two paragraphs.</p>

</myDoc>

Note the similarity between the syntax used to reference the external entity containing the requir
declarations and that used to define any other system entity (8deEntity declarationy. The square
brackets may be supplied even though they enclose nothing, as in this example, or they may be omitt

Next, we present a case where declarations are given both within the DTD subset and by reference t
external entity:

<IDOCTYPE myDoc SYSTEM "myDoc.dtd™ [
<IENTITY tla "three letter acronym'>]>

<myDoc>
<p>This is yet another instance of a "myDoc" document.</p>
<p>1t is surprisingly free of &tla;s.</p>

</myDoc>

Any kind of declaration may be added to a DTD subset; as we have alreadyZ8ehJonditional
marked sectioy this is the mechanism by which the TEI DTD is customized.

<IDOCTYPE TEI.2 PUBLIC "-//TEl P3//DTD Main Document Type//EN" "tei2.dtd" [
<IENTITY % TEl.prose "INCLUDE">
<IENTITY % TEI.XML " INCLUDE ">
<IENTITY tla "Three Letter Acronym'>
<IENTITY % x.phrase "myTag]|">
<IELEMENT myTag (#PCDATA) >

<!-- any other special-purpose declarations or
re-declarations go here -->
1>
<TEI.2>
<I-- This is an instance of a modified TEI.2 type document, which
may contain <myTag>my special tags</myTag> and references
to my usual entities such as &tla;. -->
</TEIl.2>

When, as here, the document type declaration in force includes both the contents of the DTD sub:
and the contents of some external entity (in the case above, whatever file is specifiedPbglthe
identifier given,tei2.dtd by default), declarations in the DTD subset are always carried out first. As
noted above,d.7.5Parameter entities the order is important, because in XML only the first declaration
of an entity counts. In the above example, therefore, the declaration of theteniiythe DTD subset
takes precedence over any declaration of the same entity in theiZildtd. Similarly, the declaration for

33 TEI Consortium

2 A Gentle Introduction to XML

x.data takes precedence over the existing declaration for that entity in the TEI dtd. It is perfectly legs
for entities to be declared more than once; elements, by contrast, may not be declared more than onc
a declaration foemyTag> were already contained in fitei.dtd, the XML parser would signal an error.

2.10.3 The Document Instance

The document instance is the content of the document itself. It contains only text, markup, and ent
references, and thus may not contain any new declarations. A convenient way of building up lar
documents in a modular fashion might be to use the DTD subset to declare entities for the individi
pieces or modules, thus:

<IDOCTYPE TEI.2
PUBLIC "-//TEl P3//DTD Main Document Type//EN"
“tei2.dtd" [
<IENTITY % TEl.prose "INCLUDE">
<IENTITY % TEI.XML "INCLUDE">
<IENTITY chapl SYSTEM *'chapl.txt">
<IENTITY chap2 SYSTEM '‘chap2.txt'>
<IENTITY chap3 "-- not yet written --"">
1>
<TEl.2>
<teiHeader> <!-- ___ --> </teiHeader>
<text>
<body>
&chapl;
&chap2;
&chap3;
<l—— _ .. -
</body>
</text>
</TE1.2>

In this example, the TEI DTD has been extended by entity declarations for each chapter of sor
document. The first two are external entities referring to the file in which the text of particular chapters
to be found; the third a dummy, indicating that the text does not yet exist (alternatively, an entity with
null value could be used). In the document instance, the entity refereasas1; etc. will be resolved

by the parser to give the required contents. The chapter files themselves will not, of course, contain «
element, attribute list, or entity declarations — just tagged text.

2.10.4 Ancillary Files

TEI Consortium

A working XML system is likely to use a humber of ancillary files to hold configuration information.
These may include stylesheets, specialized processing instructions, collections of relevant entity de
rations, setup information for specific programs, and many other components. In general, the ways
which such components are to be assembled or configured vary with the system and cannot readily
described here.

To assist in this process many systems take advantage of an addititakalg file the chief function

of which is to associate the formal public identifiers used in a document or DTD with specific systel
entities, over-riding any default association. One widely used format for such catalog files was defin
by an industry group originally known as SGML Open, and such files are therefore known as SGML Op
catalogs, even though they may also be used by XML processors. The group has more recently redef
itself under the name of the Organization for the Advancement of Structured Information Standar
(OASIS), and in August 2001 published a specification for catalog files in XML faPr@atalog files

in both SGML Open and XML formats are distributed along with the current TEI DTD. See ctgfpter
Obtaining the TEI DTOor more information.

%3 The SGML Open catalog format is documented in SGML Open Technical Resolution 9401E@@y Managementvhich is
available fromhttp://xml .coverpages.org/sotr9401-a2.html; the XML Catalog specification, also produced by OASIS is
available from their site atttp://www.oasis-open.org/committees/entity/spec.html.

34 March 2002

