
Comments on Feature Structure Draft

Éric de la Clergerie
INRIA – Eric.De_La_Clergerie@inria.fr

July 17, 2003

This very preliminary document collects a few comments about the current draft
about Feature Structures Representation and Declaration (ISO TC37 SC4 N33).

1 About FS Lite

The revised draft should show either explicitly or through its structure that there are
several layers of increasing complexity when using the proposed Feature Structure rep-
resentation scheme.

For instance, we can identify the following layers:

1. Using untyped feature structures with basic values and no recursion (only need
of fs without attribute andf with attributename). This layer should actually
cover most usages where people only want to express a set of basic properties on
objects.

2. Adding disjunctions on values (the other kinds of disjunctions may come later)

3. Adding libraries and compact notations

4. Adding types

5. Adding recursion and reentrency

6. Adding complex grouping (alternatives, bags, lists and sets)

7. Adding declaration mechanisms

I think the 3 or 4 first layers should cover most common usages.

2 About atomic types

I don’t believe that a draft about Feature Structures should enumerate a list of atomic
types. Such a list would overlap with specification of atomic types in other place and
would never be complete. For instance, someone may wish at some point to have dates
as atomic type or any kind of formatted strings. XML schema are an alternative where
atomic types may be defined. The FS draft should rather focus on how to use atomic
types.

1

3 About reentrency

The current draft does not precise how reentrency is handled. One may think that XML
references (through IDs) are a solution. However, I am afraid they are not, because of
renamingproblems and because of the use of FS libraries. Indeed, the reentrency points
present in several occurrences of a same feature structure (from a library) and used in
different places should be considered as distinct.

Xpointer notation seems to be a better alternative.

< f sL ib >
< f s i d =" f s 1 ">

< f name=" f "><f s i d =" f s 2 "> . . . < / f s>< / f >
< f name=" g ">

< f s i d =" f s 3 ">
< f name=" h " s h a r i n g =" . . / . . / f [@name=

f] " / >
. . .

< / f s>
< / f s>
. . .

< / f sL ib >

Notes:

• should look for a linguistic example

• not sure about the best notation (an attributesharingof f) or some new element
insidef

An alternate and more readable notation exists, not using Xpointer, is possible.

< f sL ib >
< f s i d =" f s 1 ">

< f name=" f " va r ="X"><f s i d =" f s 2 "> . . . < / f s>< / f >
< f name=" g ">

< f s i d =" f s 3 ">
< f name=" h " va r ="X" / >
. . .

< / f s>
< / f s>
. . .

< / f sL ib >

This notation has the advantage of beeing symmetric but says nothing about the
scope of variableX. For simple cases, it may be assumed that it is the topmost feature
structure containing the variable but this is not a fully acceptable answer.

2

4 Looking for examples

Examples about complex value organization (such as bags and sets) and about reen-
trency may be found within HPSG grammars. Other examples may also be found in
LFG. In particular, LFG could illustrate some use of attributerel to handle=c check
condition (subsumption relation).

5 XML as a third kind of FS representation

Actually the proposed XML representation is essentially a rephrasing of the AVM no-
tation.

This remark suggests that, maybe, some extensions of the formalism should be
added to handle the alternatepath notationfor FS where you may have the following
kinds of equations:

• path = value

• path = path

Actually, the really missing part is about stating equations between paths and this
issue is also related to the problem of reentrency (e.g., naming nodes in a graph struc-
ture).

A possible notation, with a compact variation

<FSpath><f name=" f "><f name=" g " / >< /f >< / FSpath>
<FSpath pa th =" f g " / >

The path notation often allowspath uncertaintywhere parts of a path may be left
unspecified, using star notation or some kind of regular expression (as may be found
within LFG). In a way, this is similar to the XPath notation.

<FSpath>
< f name=" f ">

< f s t a r >
< a l t >

< f name=" g " / >
< f name=" h " / >

< / a l t >
< / f s t a r >

< / f >
< / FSpath>

Maybe the best path notation (but not the most readable one) would be to use the
Xpath notation.

<FSpath pa th =" f [@name= ’ f ’] / f [@name= ’g ’] " / >
<FSpath pa th =" f [@name= ’ f ’] / (f [@name= ’g ’] | f [@name= ’h ’])∗

" / >

Note: I am not sure about the star notation in XPath.

3

6 About declaring Feature Structure

At least two possibilities seem to exist.
The first one follows the current proposal and does not need anything else. Libraries

may be used to define finite set of values and most general FS for each given type. It is
even possible to state reentrency constraints on most general structure. Each occurrence
of a FS for typeτ in a document should then be an instance (by subsumption) of the
declared one(s). There is usually one single most general FS for a given type but
nothing really forbids to have several.

Declaring most general FS for each type is fine but may be a long process (when
one has a long list of types and a long list of attributes for each type as found in HPSG).
Furthermore, nothing is said about possible inheritance through the types. A second
alternative may be to declare type hierarchies a la Carpenter. Each type specifies its
sub-types and introduce (or refine) features associated with some most general types.
The full set of features attached to a given typeτ includes the features introduced byτ
and all features introduced by its super types.

For instance, we could have something like below to specify lists of dates, using
standof notation for recursion and multi-inheritance.

<FSHierarchy t ype =" l i s t _ o f _ d a t e s ">
<FStype name=" top " i d =" top ">

<FStype name=" l i s t " i d =" l i s t ">
<FStype name=" e _ l i s t " / >
<FStype name=" n e _ l i s t ">

< f name=" hd "> <FSatomic t ype =" d a t e " / > < /f >
< f name=" t l "> <FStype i d r e f =" l i s t " / > < / f >

< / FStype>
< / FStype>

< / FStype>
< / FSHierarchy>

Of course, for the special case of lists, we could have more efficient notations (to
specify “list of something”).

The above notation is not incompatible with the specification of most general FS.
A most general FS could be included inFStype (with no need to specify inherited
features).

<FSHierarchy t ype =" f a m i l y ">
<FStype name=" top " i d =" top ">

<FStype name=" pe rson " i d =" pe rson ">
< f name=" f i r s t _ n a m e "> <FSatomic t ype =" s t r i n g " / >

< / f >
< f name=" las t_name "> <FStype i d r e f =" s t r i n g " / > <

/ f >
<FStype name=" mar r i ed ">

< f s t ype =" mar r i ed " va r ="X">
< f name=" las t_name " va r ="N" / >

4

< f name=" spouse ">
< f s t ype =" mar r i ed ">

< f name=" las t_name " va r ="N" / >
< f name=" spouse " va r ="X" / >

< / f s>
< / f >

< / f s>
< / FStype>

< / FStype>
< / FStype>

< / FSHierarchy>

Notes:

• Maybe a more linguistic example could be found with head agreement in HPSG.

• This example should be rewritten using the correct syntax for reentrency.

• The interleave betweenFStype andfs is to precised.

• Maybef elements insideFStype should be renamed intofintro .

7 A few philosophical remarks

It may noted a strong similarity between Feature Structure Representation and XML.
Both representations are very general and describe tree structures with special mech-
anisms to handle reentrency. Both of them have types (element names for XML) and
both of them need some kind of declaration mechanisms (DTDs or XML Schema for
XML). In a way, FS are as complicated as XML to handle. On a other hand, it also
means that XML techniques could be straightforwardly used to handle FS.

5

