13 Names, Dates, People, and Places

Indice

This chapter describes a module which may be used for the encoding of names and other phrases descriptive of persons, places, or organizations, in a manner more detailed than that possible using the elements already provided for these purposes in the Core module. In section 3.5 Names, Numbers, Dates, Abbreviations, and Addresses it was noted that the elements provided in the core module allow an encoder to specify that a given text segment is a proper noun, or a referring string, and to specify the kind of object named or referred to only by supplying a value for the type attribute. The elements provided by the present module allow the encoder to supply a detailed sub-structure for such referring strings, and to distinguish explicitly between names of persons, places, and organizations.

This module also provides elements for the representation of information about the person, place, or organization to which a given name is understood to refer and to represent the name itself, independently of its application. In simple terms, where the core module allows one simply to represent that a given piece of text is a name, this module allows one further to represent a personal name, to represent the person being named, and to represent the canonical name being used. A similar range is provided for names of places and organizations. The main intended applications for this module are in biographical, historical, or geographical data systems such as gazetteers and biographical databases, where these are to be integrated with encoded texts.

The chapter begins by discussing attributes common to many of the elements discussed in the remaining parts of the chapter (13.1 Attribute Classes Defined by this Module) before discussing specifically the elements provided for the encoding of component parts of personal names (section 13.2.1 Personal Names), place names (section 13.2.3 Place Names) and organizational names (section 13.2.2 Organizational Names). Elements for encoding personal and organizational data are discussed in section 13.3 Biographical and Prosopographical Data. Elements for the encoding of geographical data are discussed in section 13.3.4 Places. Finally, elements for encoding onomastic data are discussed in 13.3.5 Names and Nyms, and the detailed encoding of dates and times is described in section 13.3.6 Dates and Times.

13.1 Attribute Classes Defined by this Module

Most of the elements made available by this chapter share some important characteristics which are expressed by their membership in specific attribute classes. Members of the class att.naming have specialized attributes which support linkage of a naming element with the entity (person, place, organization) being named; members of the class att.datable have specialized attributes which support a number of ways of normalizing the date or time of the data encoded by the element concerned.

13.1.1 Linking Names and their Referents

The class att.naming is a subclass of the class att.canonical, from which it inherits the following attributes:
  • att.canonical provides attributes which can be used to associate a representation such as a name or title with canonical information about the object being named or referenced.
    keyprovides an externally-defined means of identifying the entity (or entities) being named, using a coded value of some kind.
    ref (reference) provides an explicit means of locating a full definition for the entity being named by means of one or more URIs.
. As discussed elsewhere, these attributes provide two different ways of associating any sort of name with its referent. In addition, the att.naming class provides an additional attribute, which allows the name itself to be associated with a base or canonical form:
  • att.naming identifica degli attributi comuni a elementi che si riferiscono a persone, luoghi, organizzazioni, ecc. indicati per nome
    nymRef (riferimento al nome canonico) indica un modo di localizzare la forma canonica (nym) dei nomi associati all'oggetto definito dall'elemento che lo contiene
The encoder may use these attributes in combination as appropriate. The ref attribute should be used wherever it is possible to supply a direct link such as a URI to indicate the location of canonical information about the referent. For example:
That silly man
<name ref="#DPB1type="person">David Paul Brown</name> has suffered ...
This encoding requires that there exist somewhere a person element with the identifier DPB1, which will contain canonical information about this particular person, marked up using the elements discussed in 13.3 Biographical and Prosopographical Data below. The same element might alternatively be provided by some other document, of course, which the same attribute could refer to by means of a URI, as explained in 16.2 Pointing Mechanisms:
That silly man
<name
  ref="http://www.example.com/personography.xml#DPB1"
  type="person">
David Paul Brown</name> has suffered
...
More than one URI may be supplied if the name refers to more than one person. For example, assuming the existence of another person element for Mrs Brown, with identifier EBB1, a reference to ‘the Browns’ might be encoded
That wretched pair
<name ref="#DPB1 #EBB1type="person">the Browns</name> came to dine
...
The key attribute is provided for cases where no such direct link is required: for example because resolution of the reference is carried out by some local convention, or because the encoder judges that no such resolution is necessary. As an example of the first case, a project might maintain its own local database system containing canonical information about persons and places, each entry in which is accessed by means of some system-specific identifier constructed in a project-specific way from the value supplied for the key attribute.39 As an example of the second case, consider the use of well-established codifications such as country or airport codes, which it is probably unnecessary for an encoder to expand further:
I never fly from <name key="LHRtype="place">Heathrow Airport</name>
to
<name key="FRtype="place">France</name>

The nymRef attribute has a more specialised use, where it is the name itself which is of interest rather than the person, place, or organization being named. See section 13.3.5 Names and Nyms for further discussion.

Some members of the att.naming class are also members of the att.editLike class, from which they inherit the following attributes:
  • att.editLike assegna degli attributi che descrivono il carattere di un intervento critico codificato o interpretazione di altro tipo
    resp (responsabile) indica il responsabile dell'intervento o interpretazione, per esempio un curatore o trascrittore
    cert (certezza) corrisponde al grado di certezza associato all'intervento o interpretazione
This enables an encoder to record the agency responsible for a given assertion (for example, the name) and the confidence placed in that assertion by the encoder. Examples are given below.

13.1.2 Dating Attributes

Members of the att.datable class share the following attributes:
  • att.datable.w3c indica degli attributi per la normalizzazione di elementi che contengono eventi databili utilizzando i tipi di dati del W3C
    periodfornisce un puntatore a una data posizione definendo un determinato periodo di tempo entro il quale l'oggetto da datare è collocabile
    whenindica il valore di una data o di un orario in un formato standard
    notBeforespecifica la prima data possibile per un evento nel formato standard aaaa-mm-gg
    notAfterspecifica l'ultima data possibile per un evento nel formato standard aaaa-mm-gg
    fromindica l'inizio del periodo nel formato standard
    toindica la fine del periodo nel formato standard
The period attribute provides a convenient way of associating an event or date with a named period. Its value is a pointer which should indicate some other element where the period concerned is more precisely defined. A convenient location for such definitions is the taxonomy element in the classDecl (classification declaration) in the encodingDesc of a TEI Header. A taxonomy may contain simply a bibliographic reference to an external definition for it. More usefully, it may also contain a series of category elements, each with an identifier and a description. The identifier can then be used as the target for a period attribute. For example, a taxonomy of named periods might be defined as follows:
<taxonomy xml:id="greekperiods">
 <category xml:id="tyranny">
  <catDesc>Before 510 BC</catDesc>
 </category>
 <category xml:id="classical">
  <catDesc>Between 510 and 323 BC</catDesc>
 </category>
 <category xml:id="hellenistic">
  <catDesc>
   <ref
     target="http://www.wikipedia.com/wiki/Hellenistic">
Hellenistic</ref>. Commonly treated as <date notBefore="-0323notAfter="-0031">from the death of Alexander to the Roman conquest.</date>
  </catDesc>
 </category>
 <category xml:id="roman">
  <catDesc>
   <ref
     target="http://www.wikipedia.com/wiki/Roman_Empire">
Roman</ref>
  </catDesc>
 </category>
 <category xml:id="christian">
  <catDesc> The Christian period technically starts at the
     birth of Jesus, but in
     practice is considered to date from the conversion of Constantine
     in <date when="0312">312 AD</date>. </catDesc>
 </category>
</taxonomy>
With these definitions in place, any datable event may be associated with a specific period:
<placeName period="#christian">Stauropolis</placeName>
The other dating attributes provided by this class support a wide range of methods of specifying temporal information in a normalized form. Some simple examples follow:
<birth when="1857-03-15">15 March 1857.</birth>
<birth notBefore="1857-03-01notAfter="1857-04-30">Some time
in March or April of 1857.</birth>
<residence from="1857-03-01to="1857-04-30">In March and April of 1857.</residence>
<residence from="1857-03-01notAfter="1857-04-30">From the 1st of March to
some time in April of 1857.</residence>

Normalisation of date and time values permits the efficient processing of data (for example, to determine whether one event precedes or follows another). These examples all use the W3C standard format for representation of dates and times. Further examples, and discussion of some alternative approaches to normalization are given in section 13.3.6.3 More Expressive Normalizations below.

13.2 Names

13.2.1 Personal Names

The core rs and name elements can distinguish names in a text but are insufficiently powerful to mark their internal components or structure. To conduct nominal record linkage or even to create an alphabetically sorted list of personal names, it is important to distinguish between a family name, a forename and an honorary title. Similarly, when confronted with a referencing string such as ‘John, by the grace of God, king of England, lord of Ireland, duke of Normandy and Aquitaine, and count of Anjou’, the analyst will often wish to distinguish amongst the various constituent elements present, since they provide additional information about the status, occupation, or residence of the person to whom the name belongs. The following elements are provided for these and related purposes:
  • persName (nome proprio di persona) contiene un nome proprio o un sintagma identificabile come nome proprio, che si riferisce a una persona e può includere qualsiasi o tutti i prenomi, cognomi, titoli onorifici, o nomi aggiunti della persona in questione
  • surname contiene un nome di famiglia (ereditato) piuttosto che un nome assegnato, un nome di battesimo o un soprannome
  • forename contiene un prenome assegnato o un nome di battesimo
  • roleName contiene una componente del nome che indica un ruolo o una posizione specifici a livello sociale, come nel caso di titoli ufficiali o grado militare
  • addName (nome aggiuntivo) contiene una componente aggiuntiva del nome, come un soprannome, un epiteto, o eventuali altre espressioni utilizzate all'interno di un nome proprio di persona
  • nameLink contiene un affisso di connessione all'interno del nome non considerato parte del nome, come van der oppure of
  • genName (componente generazionale del nome) contiene una componente del nome utilizzata per distinguere nomi simili tra loro sulla base della differenza di età o dell'appartenenza a generazioni diverse delle persone nominate
In addition to the att.naming attributes mentioned above, all of the above elements are members of the class att.personal, and thus share the following attributes:
  • att.personal (attributi per componenti di nomi propri di persona) attributi comuni agli elementi che compongono un nome proprio di persona
    fullindica se la componente del nome compare per esteso, come abbreviazione o come iniziale
    sortspecifica la posizione della componente all'interno del nome proprio di persona in relazione alle altre componenti
The persName element may be used in preference to the general name element irrespective of whether or not the components of the personal name are also to be marked. The element persName is synonymous with the element <name type="person">, except that its type attribute allows for further subcategorization of the personal name itself, for example as a married, maiden, pen, pseudo, or religious name. Consequently the following examples are equivalent:
That silly man
<rs key="DPB1type="person">David Paul Brown</rs> has suffered the
furniture of his office to be seized
the third time for rent.
That silly man
<rs key="DPB1type="person">
 <name>David Paul Brown</name>
</rs> has suffered ...
That silly man
<name key="DPB1type="person">David Paul Brown</name> has suffered ...
That silly man
<persName key="DPB1">David Paul Brown</persName> has suffered ...

The persName element is more powerful than the rs and name elements because distinctive name components occurring within it can be marked as such.

Many cultures distinguish between a family or inherited surname and additional personal names, often known as given names. These should be tagged using the surname and forename elements respectively and may occur in any order:
<persName>
 <surname>Roosevelt</surname>,
<forename>Franklin</forename>
 <forename>Delano</forename>
</persName>
<persName>
 <forename>Franklin</forename>
 <forename>Delano</forename>
 <surname>Roosevelt</surname>
</persName>
The type attribute may be used with both forename and surname elements to provide further culture- or project- specific detail about the name component, for example:
<persName>
 <forename type="first">Franklin</forename>
 <forename type="middle">Delano</forename>
 <surname>Roosevelt</surname>
</persName>
<persName>
 <forename type="given">Margaret</forename>
 <forename type="unused">Hilda</forename>
 <surname type="maiden">Roberts</surname>
 <surname type="married">Thatcher</surname>
</persName>
<persName type="religious">Muhammad Ali</persName>
<persName>
 <forename>Norman</forename>
 <surname type="complex">St John Stevas</surname>
</persName>
Values for the type attribute are not constrained, and may be chosen as appropriate to the encoding needs of the project. They may be used to distinguish different kinds of forename or surname, as well as to indicate the function a name component fills within the whole. In this example, we indicate that a surname is toponymic, and also point to the specific place name from which it is derived:
<persName>
 <forename>Johan</forename>
 <surname type="toponymicref="#dystvold">Dystvold</surname>
</persName>
<!-- ... -->
<placeName xml:id="dystvold">Dystvold</placeName>
The value complex was suggested above for the not uncommon case where the whole of a surname is composed of several other surname elements. These nested surnames may be individually tagged as well, together with appropriate type values:
<persName>
 <forename>Kara</forename>
 <surname type="complex">
  <surname type="paternal">Hattersley</surname>-
 <surname type="maternal">Smith</surname>
 </surname>
</persName>
The full attribute may be used to indicate whether a name is an abbreviation, initials, or given in full:
<persName>
 <forename full="abb">Maggie</forename>
 <surname>Thatcher</surname>
</persName>
These elements may be applied as the encoder considers appropriate, including cases where phrases or expressions are used to stand for surnames or forenames, as in the following:
<s>
 <persName>
  <forename>Peter</forename>
  <surname>son of Herbert</surname>
 </persName> gives the king 40 m. for
having custody of the land and heir of <persName>
  <forename>John</forename>
  <surname>son of Hugh</surname>
 </persName>...
</s>
Similarly, patronymics may be treated as forenames, thus:
... but it remained for
<persName>
 <forename>Snorri</forename>
 <forename>Sturluson</forename>
</persName>
to combine the two traditions in cyclic form.
When a patronymic is used as a surname, however (e.g. by an individual who otherwise would have no surname, but lives in a culture which requires surnames), it may be tagged as such:
Even <persName>
 <forename>Finnur</forename>
 <surname>Jonsson</surname>
</persName>
acknowledged the artificiality of the procedure...
Alternatively, it may be felt more appropriate to mark a patronymic as a distinct kind of name, neither a forename nor a surname, using the addName element:
<persName>
 <forename>Egill</forename>
 <addName type="patronym">Skallagrmsson</addName>
</persName>
In the following example, the type attribute is used to distinguish a patronymic from other forenames:
<persName key="pn9">
 <forename sort="2">Sergei</forename>
 <forename sort="3type="patronym">Mikhailovic</forename>
 <surname sort="1">Uspensky</surname>
</persName>

This example also demonstrates the use of the sort attribute common to all members of the model.persNamePart class; its effect is to state the sequence in which forename and surname elements should be combined when constructing a sort key for the name.

Some names include generational or dynastic information, such as a number, or phrases such as ‘Junior’, or ‘the Elder’; these qualifications may also be used to distinguish similarly named but unrelated people. In either case, the genName element may be used to distinguish such labels from other parts of the name, as in the following examples:
<persName key="HEMA1">
 <surname>Marques</surname>
 <genName>Junior</genName>,
<forename>Henrique</forename>
</persName>
<persName>
 <forename>Charles</forename>
 <genName>II</genName>
</persName>
<persName>
 <forename>Rudolf</forename>
 <genName>II</genName>
 <surname type="dynasty">Hapsburg</surname>
</persName>
<persName>
 <surname>Smith</surname>
 <genName>Minor</genName>
</persName>
It is also often convenient to distinguish phrases (historically similar to the generational labels mentioned above) used to link parts of a name together, such as ‘von’, ‘of’, ‘de’ etc. It is often a matter of arbitrary choice whether such components are regarded as part of the surname or not; the nameLink element is provided as a means of making clear what the correct usage should be in a given case, as in the following examples:
<persName key="DUDO1">
 <roleName type="honorificfull="abb">Mme</roleName>
 <nameLink>de la</nameLink>
 <surname>Rochefoucault</surname>
</persName>
<persName>
 <forename>Walter</forename>
 <surname>de la Mare</surname>
</persName>
Finally, the addName and roleName elements are used to mark all name components other than those already listed. The distinction between them is that a roleName encloses an associated name component such as an aristocratic or official title which exists in some sense independently of its bearer. The distinction is not always a clear one. As elsewhere, the type attribute may be used with either element to supply culture- or application- specific distinctions. Some typical values for this attribute for names in the Western European tradition follow:
nobility
An inherited or life-time title of nobility such as Lord, Viscount, Baron, etc.
honorific
An academic or other honorific prefixed to a name e.g. Doctor, Professor, Mrs., etc.
office
Membership of some elected or appointed organization such as President, Governor, etc.
military
Military rank such as Colonel.
epithet
A traditional descriptive phrase or nick-name such as The Hammer, The Great, etc.
Note, however, that the role a person has in a given context (such as witness, defendant, etc. in a legal document) should not be encoded using the roleName element, since this is intended to describe the role of this part of the name, not the role of the person bearing the name. Information about roles, occupations, etc. of a person are encoded within the person element discussed below in 13.3 Biographical and Prosopographical Data.
Here are some further examples of the usage of these elements:
<persName key="PGK1">
 <roleName type="nobility">Princess</roleName>
 <forename>Grace</forename>
</persName>
<persName key="GRMO1type="pseudo">
 <addName type="honorific">Grandma</addName>
 <surname>Moses</surname>
</persName>
<persName key="SLWICL1">
 <roleName type="office">President</roleName>
 <forename>Bill</forename>
 <surname>Clinton</surname>
</persName>
<persName key="MOGA1">
 <roleName type="military">Colonel</roleName>
 <surname>Gaddafi</surname>
</persName>
<persName key="FRTG1">
 <forename>Frederick</forename>
 <addName type="epithet">the Great</addName>
</persName>
A name may have any combination of the above elements:
<persName key="EGBR1">
 <roleName type="office">Governor</roleName>
 <forename sort="2">Edmund</forename>
 <forename full="initsort="3">G.</forename>
 <addName type="nick">Jerry</addName>
 <addName type="epithet">Moonbeam</addName>
 <surname sort="1">Brown</surname>
 <genName full="abb">Jr</genName>.

</persName>

Although highly flexible, these mechanisms for marking personal name components will not cater for every personal name and processing need. Where the internal structure of personal names is highly complex or where name components are particularly ambiguous, feature structures are recommended as the most appropriate mechanism to mark and analyze them, as further discussed in chapter 18 Feature Structures.

13.2.2 Organizational Names

In these Guidelines, we use the term ‘organization’ for any named collection of people regarded as a single unit. Typical examples include businesses or institutions such as ‘Harvard College’ or ‘the BBC’, but also racial or ethnic groupings or political factions where these are regarded as forming a single agency such as ‘the Scythians’ or ‘the Militant Tendency’. Giving a loosely-defined group of individuals a name often serves a particular political or social agenda and an analysis of the way such phrases are constructed and used may therefore be of considerable importance to the social historian, even where the objective existence of an ‘organization’ in this sense is harder to demonstrate than that of (say) a named person. In the case of business or other formally constituted institutions, the component parts of an organizational name may help to characterize the organization in terms of its perceived geographical location, ownership, likely number of employees, management structure, etc.

Like names of persons or places, organizational names can be marked up as referring strings or as proper names with the rs or name elements respectively. The element orgName is provided for use where it is desired to distinguish organizational names more explicitly.
  • orgName (nome di organizzazione) contiene il nome proprio di un'organizzazione
This element is a member of the same attribute classes as persName, as discussed above in 13.1.1 Linking Names and their Referents.
The orgName element may be used to mark up any form of organizational name:
About a year back, a question of considerable
interest was agitated in the
<orgName type="voluntarykey="PAS1">Pennsyla. Abolition Society</orgName>
This encoding is equivalent to, but more specific than, either of the following representations:
About a year back, a question of considerable
interest was agitated in the <rs key="PAS1type="org">
 <name>Pennsyla. Abolition Society</name>
</rs>.
About a year back, a question of considerable
interest was agitated in the
<name key="PAS1type="org">Pennsyla. Abolition
Society</name>.
As shown above, like the rs and name elements, the orgName element has a key attribute with which an external identifier such as a database key can be assigned to the organization name, and also a ref attribute which can be used to point directly to an org element containing information about the organization itself (see further 13.3.3 Organizational Data). Its type attribute should be used to characterize the name (rather than the organization), for example as an acronym:
Mr Frost will be able to earn an extra fee from
<orgName type="acronym">BSkyB</orgName>
rather than the
<orgName type="acronym">BBC</orgName>
as a phrase:
The feeling in <country>Canada</country> is one of
strong aversion to the <orgName type="phrase">United
States Government</orgName>, and of
predilection for self-government under
the
<orgName type="phrase">English Crown</orgName>
<orgName>The Justified Ancients of Mu Mu</orgName>
or as a composite of other kinds of name:
<orgName type="partnerNames">
 <surname>Ernst</surname> &amp; <surname>Young</surname>
</orgName>
The components of an organization's name are not always personal names. They may also include place names:
A spokesman from
<orgName type="regional">
 <orgName>IBM</orgName>
 <country>UK</country>
</orgName> said ...
or role names:
THE TICKET which you will receive herewith has been formed by
the <orgName>Democratic Whig <name type="role">party</name>
</orgName> after the most careful deliberation,
with a reference to all the great objects of NATIONAL, STATE,
COUNTY and CITY concern, and with a single eye to the <hi>Welfare and Best Interests of the Community</hi>.
As indicated above, organizational names may also be specified hierarchically particularly where the named organization is itself a department or a branch of a larger organizational entity. ‘The Department of Modern History, Glasgow University’ is an example:
<orgName>
 <orgName>Department of Modern History</orgName>
 <orgName>
  <name type="city">Glasgow</name>
  <name type="role">University</name>
 </orgName>
</orgName>

13.2.3 Place Names

Like other proper nouns or noun phrases used as names, place names can simply be marked up with the rs element, or with the name element. For cartographers and historical geographers, however, the component parts of a place name provide important information about the relation between the name and some spot in space and time. They also provide important evidence in historical linguistics.

These Guidelines distinguish three ways of referring to places. A place name (represented using the placeName element) may consist of one or more names for hierarchically-organized geo-political or administrative units (see section 13.2.3.1 Geo-political Place Names). A place named simply in terms of geographical features such as mountains or rivers is represented using the geogName element (see section 13.2.3.2 Geographic Names). Finally, an expression consisting of phrases expressing spatial or other kinds of relationship between other kinds of named place may itself be regarded as a way of referring to a place, and hence as a kind of named place (see section 13.2.3.3 Relative Place Names).
  • placeName contiene l'indicazione assoluta o relativa di un nome di luogo
  • geogName (nome proprio geografico) nome associato a un elemento geografico, come valle Windrush o Monte Sinai

As members of the att.naming class, all of these elements bear the attributes key, ref, and nymRef mentioned above. These attributes are primarily useful as a means of linking a place name with information about a specific place. Recommendations for the encoding of information about a place, as distinct from its name, are provided in 13.3.4 Places below.

Like the persName element discussed in section 13.2.1 Personal Names, the placeName element may be regarded simply as an abbreviation for the elements <name type="place"> or <rs type="place">. The following encodings are thus equivalent:40
After
spending some time in our <rs key="NY1type="place">modern <name key="BA1type="place">Babylon</name>
</rs>, <name key="NY1type="place">New York</name>, I have proceeded to the <rs key="PH1type="place">City of Brotherly Love</rs>.
After spending some
time in our <placeName key="NY1">modern <placeName key="BA1">Babylon</placeName>
</placeName>, <placeName key="NY1">New
York</placeName>, I have proceeded to the <placeName key="PH1">City of
Brotherly Love</placeName>.
13.2.3.1 Geo-political Place Names
A place name may contain text with no indication of its internal structure:
<placeName>Rochester,
NY</placeName>
More usually however, a place name of this kind will be further analysed in terms of its constitutive geo-political or administrative units. These may be arranged in ascending sequence according to their size or administrative importance, for example: ‘Rochester, New York’, or as a single such unit, for example ‘Belgium’. These Guidelines provide a hierarchy of generic element names, each of which may be more exactly specified by means of a type attribute:
  • district contiene il nome di una qualsiasi suddivisione all'interno di un insediamento, come una circoscrizione, un quartiere o altre unità amministrative o geografiche
  • settlement contiene il nome di un insediamento quale una città o un comune considerati come unità geopolitica o amministrativa
  • region contiene il nome di un'unità amministrativa, come uno stato o una provincia, che sia più ampia di un piccolo insediamento ma più piccola di un paese
  • country contiene il nome di un'unità geopolitica, come una nazione, un paese, una colonia, o un'unione di stati, che sia più ampia o amministrativamente superiore rispetto a una regione ma di dimensioni inferiori rispetto a un blocco
  • bloc contiene il nome di un'unità geopolitica comprendente uno o più stati nazione o paesi
These elements are all members of the model.placeNamePart class, members of which may be used anywhere that text is permitted, including within each other as in the following examples:
<placeName>
 <settlement type="city">Rochester</settlement>,
<region type="state">New York</region>
</placeName>
<placeName key="LSEA1">
 <country type="nation">Laos</country>,
<bloc type="sub-continent">Southeast Asia</bloc>
</placeName>
<placeName>
 <district type="arondissement">6ème</district>
 <settlement type="city">Paris, </settlement>
 <country>France</country>
</placeName>
13.2.3.2 Geographic Names
Places may also be named in terms of geographic features such as mountains, lakes, or rivers, independently of geo-political units. The geogName is provided to mark up such names, as an alternative to the placeName element discussed above. For example:
<geogName key="MIRI1type="river">Mississippi River</geogName>
In addition to the usual phrase level elements, the geogName element may contain the following specialized element:
  • geogFeat (nome di elemento geografico) contiene un nome comune che identifica elementi geografici inclusi in un nome proprio geografico, come valle, monte, ecc.
Where the geogFeat element is used to characterize the kind of geographic feature being named, the name element will generally also be used to mark the associated proper noun or noun phrase:
<geogName key="MIRI1type="river">
 <name>Mississippi</name>
 <geogFeat>River</geogFeat>
</geogName>
A more complex example, showing a variety of practices, follows:
The isolated ridge
separates two great corridors which run from <name key="GLCO1type="place">Glencoe</name> into
<geogName key="GLET1type="glen">
 <geogFeat>Glen</geogFeat>
 <name>Etive</name>
</geogName>, the
<geogName key="LAGA1type="hill">
 <geogFeat xml:lang="gd">Lairig</geogFeat>
 <name>Gartain</name>
</geogName> and the

<geogName key="LAEI1type="hill">
 <geogFeat xml:lang="gd">Lairig</geogFeat>
 <name>Eilde</name>
</geogName>

The Gaelic word lairig may be glossed as sloping hill face. The most efficient way of including this information in the above encoding would be to create a separate nym element for this component of the name and then point to it using the nymRef attribute, as further discussed in 13.3.5 Names and Nyms.

13.2.3.3 Relative Place Names

All the place name specifications so far discussed are absolute, in the sense that they define only one place. A place may however be specified in terms of its relationship to another place, for example ‘10 miles northeast of Paris’ or ‘near the top of Mount Sinai’. These relative place names will contain a place name which acts as a referent (e.g. ‘Paris’ and ‘Mount Sinai’). They will also contain a word or phrase indicating the position of the place being named in relation to the referent (e.g. ‘the top of’, ‘north of’). A distance, possibly only vaguely specified, between the referent place and the place being indicated may also be present (e.g. ‘10 miles’, ‘near’).

Relative place names may be encoded using the following elements in combination with either a placeName or a geogName element.
  • offset la parte di un'espressione temporale o spaziale relativa che indica la direzione dello sfasamento tra due nomi di luogo, date o orari all'interno dell'espressione
  • measure contiene una parola o sintagma che fa riferimento alla quantità di un oggetto o bene, contenente di solito il numero, l'unità e il nome del bene.
Some examples of relative place names are:
<placeName key="NRPA1">
 <offset>near the top of</offset>
 <geogName>
  <geogFeat>Mount</geogFeat>
  <name>Sinai</name>
 </geogName>
</placeName>
<placeName>
 <measure>20 km</measure>
 <offset>north of</offset>
 <settlement type="city">Paris</settlement>
</placeName>
If desired, the distance specified may be normalized using the unit and quantity attributes of measure:
<placeName key="Duncan">
 <measure unit="kmquantity="17.7">11 miles</measure>
 <offset>Northwest of</offset>
 <settlement type="city">Providence</settlement>, <region type="state">RI</region>
</placeName>

The internal structure of place names is like that of personal names — complex and subject to an enormous amount of variation across time and different cultures. The recommendations in this section should however be adequate for a majority of users and applications; they may be extended using the mechanisms described in chapter 23.2 Personalization and Customization to add new elements to the existing classes. When the focus of interest is on the name components themselves, as in place name studies for example, the elements discussed in 13.3.5 Names and Nyms may also be of use. Alternatively, the meaning structure itself may be represented using feature structures (18 Feature Structures).

13.3 Biographical and Prosopographical Data

This module defines a number of special purpose elements which can be used to markup biographical, historical, and prosopographical data. We envisage three basic types of users and uses for these elements. The first is the person interested in creating or converting an existing set of biographical records, for example of the type found in a Dictionary of National Biography. The second is the person hoping to create or convert a database-like collection of information about a group of people, possibly but not necessarily the people referenced in a marked-up collection of documents or a text-corpus. The third type would be those interested in the creation or conversion of biographical or CV-like structured texts for use in such applications as Human Resource management.

To cater for this diversity, these Guidelines propose a flexible approach, in which encoders may choose for themselves the degree of prescription appropriate to their needs. If one were interested, for example, in converting existing DNB-type records, and wanted to preserve the text as is, the person element (see 13.3.2 The Person Element) could simply contain the text of an article, placed within p elements, possibly using elements such as name or date to mark up features of that text. For a more structured entry, however, one would extract the data and place information contained by the text, and encode it directly using the more specific elements described in this section.

13.3.1 Basic Principles

Information about people, places, and organizations, of whatever type, essentially comprises a series of statements or assertions relating to:
  • characteristics or traits which do not, by and large, change over time
  • characteristics or states which hold true only at a specific time
  • events or incidents which may lead to a change of state or, less frequently, trait.

‘Characteristics’ or ‘traits’ are typically independent of an individual's volition or action and can be either physical, such as sex or hair and eye colour, or cultural, such as ethnicity, caste, or faith. The distinction is not entirely straightforward, however: while sex is fairly obviously a physical trait, gender should rather be regarded as culturally determined, and the division of mankind into different ‘races’, proposed by early (white European) anthropologists on the basis of physical characteristics such as skin colour, hair type and skull measurements, is by many modern cultural anthropologists now considered to be more a social or mental construct than an objective biological fact. Furthermore, while some characteristics will obviously change over time, hair colour for example, none, in principle — not even sex — is immutable.

‘States’ include, for example, marital status, place of residence and position or occupation. Such states have a definite duration, that is, they have a beginning and an end and are typically a consequence of the individual's own action or that of others.

By ‘changes in state’ are meant the events in a person's life such as birth, marriage, or appointment to office; such events will normally be associated with a specific date or a fairly narrow date-range. Changes in states can also cause or be caused by changes in characteristics. Any statement or assertion on any of these aspects of a person's life will be based on some source, possibly multiple sources, possibly contradictory. Taking all this into account it follows that each such statement or assertion needs to be able to be documented, put into a time frame and be relatable to other statements or assertions of the same or any of the other types.

The elements defined by the module described in this chapter may, for the most part, all be regarded as specialisations of one or other of the above three classes. Generic elements for state, trait, and event are also defined:
  • event qualsiasi fenomeno o evento non necessariamente vocale o comunicativo, come rumori accidentali o altri fenomeni che incidano sulla comunicazione in atto
    whereindica la posizione di un evento facendo riferimento a un elemento place
  • state specifica un componente di un riferimento canonico definito dal metodo milestone.
  • trait contiene la descrizione di una caratteristica personale o legata alla cultura di appartenenza di una determinata persona

13.3.2 The Person Element

Information about a person, as distinct from references to a person, for example by name, is grouped together within a person element. Information about a group of people regarded as a single entity (for example ‘the audience’ of a performance) may be encoded using the personGrp element. Note however that information about a group of people with a distinct identity (for example a named theatrical troupe) should be recorded using the org element described in section 13.3.3 Organizational Data below.

These elements may appear only within a listPerson element, which groups such descriptions together, and optionally also describes relationships amongst the people listed.
  • person fornisce informazioni relative a un soggetto specifico, come i partecipanti a un'interazione verbale o le persone identificate da una fonte storica
  • personGrp (gruppo di persone) descrive un gruppo di soggetti considerati come unica persona a fini analitici
  • listPerson (elenco delle persone) contiene una lista di descrizioni, ciascuna delle quali fornisce informazioni relative a una persona specifica o a un gruppo di persone, per esempio i partecipanti a un'interazione verbale o le persone identificate da una fonte storica
  • relationGrp (gruppo di relazioni) fornisce informazioni relative alle relazioni identificate tra persone, luoghi e organizzazioni, a livello informale discorsivo o sotto forma di legami formalmente espressi

One or more listPerson elements may be supplied within the particDesc (participant description) element in the profileDesc element of a TEI Header (see 2.4 The Profile Description). Like other forms of list, however, the listPerson can also appear within the body of a text when the module defined by this chapter is included in a schema.

The type attribute may be used to distinguish lists of people of different kinds where this is considered convenient:
<profileDesc>
 <particDesc>
  <listPerson type="historical">
   <person xml:id="ART1">
    <persName>Arthur</persName>
   </person>
   <person xml:id="BERT1">
    <persName>Bertrand</persName>
   </person>
<!-- ... -->
  </listPerson>
  <listPerson type="mythological">
   <person xml:id="ART2">
    <persName>Arthur</persName>
   </person>
   <person xml:id="BERT2">
    <persName>Bertrand</persName>
   </person>
<!-- ... -->
  </listPerson>
 </particDesc>
</profileDesc>
The person element provides several useful attributes. First, as a member of att.editLike, the person element may carry attributes useful for indicating details about the scholarly interpretations made about the information recorded for the person in question:
  • att.editLike assegna degli attributi che descrivono il carattere di un intervento critico codificato o interpretazione di altro tipo
    cert (certezza) corrisponde al grado di certezza associato all'intervento o interpretazione
    resp (responsabile) indica il responsabile dell'intervento o interpretazione, per esempio un curatore o trascrittore
    evidenceindica il carattere delle prove a sostegno dell'affidabilità o accuratezza dell'intervento o interpretazione
    sourcecontiene una lista di uno o più puntatori indicanti le fonti a sostegno di una data lettura
Second, attributes specific to person (and personGrp) allow specification of some particular information about the person (or group).
  • person fornisce informazioni relative a un soggetto specifico, come i partecipanti a un'interazione verbale o le persone identificate da una fonte storica
    rolestabilisce il ruolo o la classificazione primaria di una persona
    sexindica il sesso di una persona
    ageindica la fascia di età di una persona
It is worth noting that the age attribute is not intended to record the person's age expressed in years, months, or other temporal unit. Rather it is intended to record into which age bracket, for the purposes of some analysis, the person falls. A simple (perhaps too simple to be useful) binary classification of age brackets would be child and adult. The actual age brackets useful to various projects are likely to be varied and idosyncratic, and thus these Guidelines make no particular recommendation as to possible values. However, it is likely to be of great value to encoders to have a closed list of possible values and documention of those values. Thus projects will typically declare the values being used in their customization file. For example, the following declaration might be useful.
<elementSpec ident="personmodule="namesdatesmode="change">
 <attList>
  <attDef mode="replaceident="age">
   <datatype>
    <rng:ref name="data.enumerated"/>
   </datatype>
   <valList type="closed">
    <valItem ident="child">
     <desc>less than 18 years of age</desc>
    </valItem>
    <valItem ident="adult">
     <desc>18 to 65 years of age</desc>
    </valItem>
    <valItem ident="retired">
     <desc>over 65 years of age</desc>
    </valItem>
   </valList>
  </attDef>
 </attList>
</elementSpec>
The above declaration, were it properly placed in a customization file, establishes that the age attribute of person has only three possible values, child, adult, and retired. For more information on customization see 23.2 Personalization and Customization.

The person element may contain many sub-elements, each specifying a different property of the person being described. The remainder of this section describes these more specific elements. For convenience, these elements are grouped into three classes, corresponding with the tripartite division outlined above: one for traits, one for states and one for events. Each class contains both specific elements for common types of biographical information, and a generic element for other, user-defined, types of information.

All the elements in these three classes belong to the attribute class att.datable, which provides the following attributes:
  • att.datable.w3c indica degli attributi per la normalizzazione di elementi che contengono eventi databili utilizzando i tipi di dati del W3C
    whenindica il valore di una data o di un orario in un formato standard
    notBeforespecifica la prima data possibile per un evento nel formato standard aaaa-mm-gg
    notAfterspecifica l'ultima data possibile per un evento nel formato standard aaaa-mm-gg
    fromindica l'inizio del periodo nel formato standard
    toindica la fine del periodo nel formato standard
as discussed in 13.1 Attribute Classes Defined by this Module above.
13.3.2.1 Personal Characteristics
The model.persTraitLike class contains elements describing physical or socially-constructed characteristics or traits of a person. Members of the class comprise the following specific elements:
  • faith indica fede, religione, o credo di una persona
  • langKnowledge (conoscenza della lingua) riassume la conoscenza linguistica di una persona in forma descrittiva o tramite una lista di elementi langKnown
  • langKnown (competenza linguistica) riassume la competenza di una persona in una determinata lingua
  • nationality contiene una descrizione informale della nazionalità o cittadinanza presente o passata di una persona
  • sex specifica il sesso di una persona
  • age indica l'età della persona
  • socecStatus (condizione socio-economica) contiene una descrizione informale della condizione socio-economica percepita di una persona
All, apart from langKnowledge, have a content model of macro.phraseSeq, by which is meant ordinary prose containing phrase-level elements.
<socecStatus key="AB1">Status AB1 in the RG Classification scheme</socecStatus>

The langKnowledge element contains either paragraphs or a number of langKnown elements; it may take a tags attribute, which provides one or more standard codes or ‘tag’s for the languages. The langKnown element must have a tag attribute, which indicates the language with the same kind of ‘language tag’. These ‘language tags’ are discussed in detail in vi.1. Language identification.

Furthermore, the langKnown element also has a level attribute to indicate the level of the person's competence in the language. It is thus possible either to say:
<langKnowledge tags="ff fr wo en">
 <p>Speaks fluent Fulani, Wolof, and French. Some knowledge of English.</p>
</langKnowledge>
or
<langKnowledge>
 <langKnown level="fluenttag="ff">Fulani</langKnown>
 <langKnown level="fluenttag="wo">Wolof</langKnown>
 <langKnown level="fluenttag="fr">French</langKnown>
 <langKnown level="basictag="en">English</langKnown>
</langKnowledge>
The sex element carries a value attribute to give the ISO 5218:1977 values (1 for male, 2 for female, 9 for non-applicable, and 0 for unknown).
<sex value="2">female</sex>
The generic trait element is also a member of this class,
  • trait contiene la descrizione di una caratteristica personale o legata alla cultura di appartenenza di una determinata persona
This element can be used to extend the range of information supplied about an individual's personal traits. It may contain an optional label element, used to provide a human-readable specification for the category of trait or feature concerned and a description of the feature itself supplied within a desc element. These may be followed by or one or more p elements supplying more detailed information about the trait. In either case, these may be followed by one or more notes or bibliographical references. The type, ref, and key attributes are available on the trait element to indicate a fuller definition of the combination of feature and value.
<trait type="ethnicitykey="alb">
 <label>Ethnicity</label>
 <desc>Ethnic Albanian.</desc>
</trait>
The generic element can be used in place of one of the more specific elements:
<trait type="nationalitynotBefore="2002-01-15">
 <label>Nationality</label>
 <desc>American citizen from 15 January 2002.</desc>
</trait>
is the same as:
<nationality notBefore="2002-01-15">Became an American citizen on 15 January 2002.</nationality>
or even:
<nationality notBefore="2002-01-15key="US"/>
More usually however, the element is provided as a simple means of extending the set of descriptive features available in a standardized way. For example, there are no predefined elements for such features as eye or hair colour. If these are to be recorded, they may simply be added as new types of trait:
<trait type="physical">
 <label>eye colour</label>
 <desc>blue</desc>
</trait>
<trait type="physical">
 <label>hair colour</label>
 <desc>brown</desc>
</trait>
13.3.2.2 Personal States
The model.persStateLike class contains elements describing changeable characteristics of a person which have a definite duration, for example occupation, residence, or name. Members of the class comprise the following specific elements:
  • persName (nome proprio di persona) contiene un nome proprio o un sintagma identificabile come nome proprio, che si riferisce a una persona e può includere qualsiasi o tutti i prenomi, cognomi, titoli onorifici, o nomi aggiunti della persona in questione
  • occupation contiene una descrizione informale dell'attività, professione o occupazione di una persona
  • residence (residenza) descrive il luogo di residenza presente o passato di una persona
  • affiliation contiene una descrizione informale dell'appartenenza presente o passata di una persona a una determinata organizzazione, per esempio un'azienda o un ente finanziatore
  • education contiene una descrizione relativa all'istruzione di una persona
  • floruit contiene informazioni relative al periodod di attività di una persona
The persName element is repeatable and can, like all TEI elements, take the attribute xml:lang to indicate the language of the content of the element, as well as a type attribute to indicate the type of name, whether a nickname, maiden name, alternative form, etc. This is useful in cases where, for example, a person is known by a Latin name and also by any number of vernacular names, many or all of which may have claims to ‘authenticity’. In order to ensure uniformity, the method generally employed in the library world has been to accept the form found in some authority file, for example that of the American Library of Congress, as the ‘base’ or ‘neutral’ form. Feelings can run high on this matter, however, and people are often reluctant to accept as ‘neutral’ an overtly foreign form of the name of their local saint or hero. Within the person element any number of variant forms of a name can be given, with no prioritisation, and hence less likelihood of offence. The Icelandic scholar and manuscript collector Árni Magnússon, to give his name in standard modern Icelandic spelling, is known in Danish as Arne Magnusson, the form which he himself, as a life-long resident of Denmark, generally used; there is also a Latinised form, Arnas Magnæus, which he used in his scholarly writings. All three forms can be given, and in any order:
<person xml:id="ArnMag">
 <persName xml:lang="is">Árni Magnússon</persName>
 <persName xml:lang="da">Arne Magnusson</persName>
 <persName xml:lang="la">Arnas Magnæus</persName>
</person>
At the other extreme, a person may be named periphrastically as in the following example:
<person xml:id="simon_son_of_richard2">
 <persName>Simon, son of Richard</persName>
 <residence>
  <placeName>
   <region>Essex</region>
  </placeName>
 </residence>
 <floruit notBefore="1219notAfter="1223">1219-1223</floruit>
</person>
In addition to these specific elements the class contains a generic element called state.
  • state specifica un componente di un riferimento canonico definito dal metodo milestone.
This element can be used to extend the range of descriptive information available in the same way as the trait element, using the same content model. For example, a description of the first living held by the Icelandic clergyman and poet Jón Oddsson Hjaltalín might be tagged as follows:
<state type="officefrom="1777-04-07to="1780-07-12">
 <p>Jón's first living — which he apparently accepted rather reluctantly — was at
 <name type="place">Háls í Hamarsfirði</name>, <name type="place">Múlasýsla</name>, to which
   he was presented on 7 April 1777. He was ordained the following
   month and spent three years at Háls, but was never happy there,
   due largely to the general penury in which he was forced to live —
   a recurrent theme throughout the early part of his life. In June
   of 1780 the bishop recommended that Jón
   should <q xml:lang="da">promoveres til andet bedre kald, end det
     hand hidindtil har havt</q>, and on 12 July it was agreed that
   he should exchange livings with
 <name type="personkey="ThorJon">sr. Þórður Jónsson</name> at
 <name type="place">Kálfafell á Síðu</name>,
 <name type="place">Skaftafellssýsla</name>.</p>
 <bibl>ÞÍ, Stms I.15, p. 733.</bibl>
 <bibl>ÞÍ, Stms I.17, p. 102.</bibl>
</state>
13.3.2.3 Personal Events
The model.persEventLike class contains elements describing specific events in a person's history, for example birth, marriage, or appointment. These are not characteristics of an individual, but often cause an individual to gain such characteristics, or to enter a new state. Members of this class comprise the following elements:
  • birth contiene informazioni relative al luogo e alla data di nascita di una persona
  • death contiene informazioni relative al luogo e alla data di morte di una persona
Only two specific elements (birth and death) are proposed. The generic element event has a similar content model to that of state and trait; the chief difference being that it can include a placeName element to identify the name of the place where the event occurred. It is used to describe any event in the life of an individual or organization.
In the following example, we give a brief summary of the wedding of Jane Burden to the English writer, designer, and socialist William Morris, encoded as an event element embedded within the person element used to record data about Morris, though we could equally well have embedded the event within the person element for Burden, or have given it as a freestanding event independent of either person element:
<person xml:id="WM">
<!-- ... -->
 <event type="marriagewhen="1859-04-26">
  <label>Marriage</label>
  <desc>
   <name type="personref="#WM">William Morris</name> and <name type="personref="#JBM">Jane Burden</name> were
     married at <name type="place">St Michael's Church, Ship Street, Oxford</name> on
  <date when="1859-04-26">26 April 1859</date>. The wedding was
     conducted by Morris's friend <name type="personref="#RWD">R. W.
       Dixon</name> with <name type="personref="#CBF">Charles
       Faulkner</name> as
     the best man. The bride was given away by her father,
  <name type="personref="#RB">Robert Burden</name>.
     According to the account that <name type="personref="#EBJ">Burne-Jones</name>
     gave <name type="personref="#JWM">Mackail</name>
   <quote>M. said to Dixon beforehand <said>Mind
         you don't call her Mary</said> but he did</quote>. The entry in the
     Register reads: <quote>William Morris, 25, Bachelor Gentleman, 13
       George Street, son of William Morris decd. Gentleman. Jane Burden,
       minor, spinster, 65 Holywell Street, d. of Robert Burden,
       Groom.</quote> The witnesses were Jane's parents and Faulkner. None of
     Morris's family attended the ceremony. Morris presented Jane with a
     plain gold ring bearing the London hallmark for 1858. She gave her
     husband a double-handled antique silver cup.</desc>
  <bibl>J. W. Mackail, <title>The Life of William Morris</title>, 1899.</bibl>
 </event>
</person>
<person xml:id="JBM">
 <persName>Jane Burden</persName>
</person>
<person xml:id="RWD">
 <persName>R.W. Dixon</persName>
</person>
<person xml:id="CBF">
 <persName>Charles Faulkner</persName>
</person>
<person xml:id="EBJ">
 <persName>
  <forename>Edward</forename>
  <surname>Burne-Jones</surname>
 </persName>
</person>
<person xml:id="JWM">
 <persName>J.W. Mackail</persName>
</person>
In this example the ref attributes on the various name elements point to the person elements for the other people named. As further discussed below (13.3.2.4 Personal Relationships), a relation element may then be used to link them in a more meaningful way:
<relation name="spousemutual="#WM #JBM"/>
<relation name="friendmutual="#WM #RWD"/>
<relation name="parentactive="#RBpassive="#JBM"/>
As mentioned above, all these elements, both the specific and the generic, are members of the att.datable attribute class, which means they can be limited in terms of time. The following encoding, for example, demonstrates that the person named David Jones changed his name in 1966 to David Bowie:
<person xml:id="DB">
 <persName notAfter="1966">David Jones</persName>
 <persName notBefore="1966">David Bowie</persName>
</person>
All the generic elements are also members of the att.editLike class, which, as its name implies, was originally intended to provide attributes ‘describing the nature of an encoded scholarly intervention or interpretation of any kind’ and which makes available the attributes cert, to indicate the degree of certainty, resp, the agency responsible, and evidence, the nature of the evidence used. In this way it is possible, in the case of multiple and conflicting sources, to provide more than one view of what happened, as in the following example:
<event type="birthresp="#XYZcert="high">
 <p>Born in <name type="place">Brixton</name> on 8 January 1947.</p>
</event>
<event type="birthresp="#ABCcert="low">
 <p>Born in <name type="place">Berkhamsted</name> on 9 January 1947.</p>
</event>
13.3.2.4 Personal Relationships
When the module defined by this chapter is included in a schema, the following two elements may be used to document relationships amongst the persons, places, or organizations identified:
  • relationGrp (gruppo di relazioni) fornisce informazioni relative alle relazioni identificate tra persone, luoghi e organizzazioni, a livello informale discorsivo o sotto forma di legami formalmente espressi
  • relation (relazione) descrive una qualsiasi relazione o legame all'interno di un determinato gruppo di persone
    nameassegna un nome al tipo di relazione che rappresenta
    activeidentifica i partecipanti attivi in una relazione di non reciprocità, oppure tutti i partecipanti in una relazione di reciprocità
    mutualfornisce una lista di partecipanti tra i quali c'è una relazione paritaria
    passiveidentifica i partecipanti ‘passivi’all'interno di una relazione di non reciprocità.
These elements are both members of the att.typed class, from which they inherit the type and subtype attributes in the usual way. The value specified for either attribute on a relationGrp element is implicitly applicable to all of its child relation elements, unless overriden.

A relationship, as defined here, may be any kind of describable link between specified participants. A participant (in this sense) might be a person, a place, or an organization. In the case of persons, therefore, a relationship might be a social relationship (such as employer/employee), a personal relationship (such as sibling, spouse, etc.) or something less precise such as ‘possessing shared knowledge’. A relationship may be mutual, in that all the participants engage in it on an equal footing (for example the ‘sibling’ relationship); or it may not be if participants are not identical with respect to their role in the relationship (for example, the ‘employer’ relationship). For non-mutual relationships, only two kinds of role are currently supported; they are named active and passive. These names are chosen to reflect the fact that non-mutual relations are directed, in the sense that they are most readily described by a transitive verb, or a verb phrase of the form is X of or is X to. The subject of the verb is classed as active; the direct object of the verb, or the object of the concluding preposition, as passive. Thus parents are ‘active’ and children ‘passive’ in the relationship ‘parent’ (interpreted as is parent of); the employer is ‘active’, the employee ‘passive’, in the relationship employs. These relationships can be inverted: parents are ‘passive’ and children ‘active’ in the relationship is child of; similarly ‘works for’ inverts the active and passive roles of ‘employs’.

For example:
<relationGrp>
 <relation name="parentactive="#P1 #P2passive="#P3 #P4"/>
 <relation name="spousemutual="#P1 #P2"/>
 <relation
   type="social"
   name="employer"
   active="#P1"
   passive="#P3 #P4"/>

</relationGrp>
This example defines the relationships amongst a number of people not further described here; we assume however that each person has been allocated an identifier such as P1, P2, etc. which can be linked to using the reference #P1. Then the above set of relation elements describe the following three relationships amongst the seven people referenced:
  • P1 and P2 are parents of P3 and P4.
  • P1 and P2 are linked in a mutual relationship called ‘spouse’ — that is, P2 is the spouse of P1, and P1 is the spouse of P2.
  • P1 has the social relationship ‘employer’ with respect to P3, and P4.

Relationships within places and organizations are further discussed in the relevant section below. Relationships between for example organizations and places, or places and persons, may be handled in exactly the same way.

13.3.3 Organizational Data

The org and listOrg elements are used to store data about an organization such as its preferred name, its locations, or key persons within it.
  • org (organizzazione) fornisce informazioni relative a un'organizzazione identificale come società, tribù, o qualsiasi altro raggruppamento di persone
  • listOrg (elenco delle organizzazioni) contiene una lista di descrizioni, ognuna delle quali fornisce informazioni relative a una determinata organizzazione
These elements are intended to be used in a way analogous to the place and person elements discussed elsewhere in this chapter, that is to provide as a unique wrapper element for information about an entity, distinct from references to that entity which are typically encoded using a naming element such as <name type="org"> or orgName. The content of a naming element will represent the way an organization is named in a given context; the content of an org represents the information known to the encoder about that organization, gathered together in a single place, and independent of its textual realization.

An organization is not the same thing as a list or group of people because it has an identity of its own. That identity may be expressed solely in the existence of a name (for example ‘The Scythians’), but is likely to consist in the combination of that name with a number of events, traits, or states which are considered to apply to the organization itself, rather than any of its members. For example, a sports team might be defined in terms of its membership (a listPerson), its fixtures (a listPlace), its geographical affiliation (a placeName), or any combination of these. It will also have properties which may be used to categorize it in some way such as the kind of sport played, whether the team is amateur or professional, and so on: these are probably best dealt with by means of the type attribute. However, it is the name of the sports team alone which identifies it.

The content model for org permits any mixture of generic state, trait, or event elements: the presence of the orgName element described in 13.2.2 Organizational Names is however strongly recommended.

In other respects, the org element is used in much the same way as place or person. An organization may have different names at different times:
<org>
 <orgName notAfter="1960">The Silver Beetles</orgName>
 <orgName from="1960-08">The Beatles</orgName>
</org>
The names of the people making up an organization can also change over time, (if they are known at all). For example:
<org>
 <orgName notAfter="1960">The Silver Beetles</orgName>
 <orgName notBefore="1960">The Beatles</orgName>
 <state type="membershipfrom="1960-08to="1962-05">
  <desc>
   <persName>John Lennon</persName>
   <persName>Paul McCartney</persName>
   <persName>George Harrison</persName>
   <persName>Stuart Sutcliffe</persName>
   <persName>Pete Best</persName>
  </desc>
 </state>
 <state type="membershipnotBefore="1963">
  <desc>
   <persName>John Lennon</persName>
   <persName>Paul McCartney</persName>
   <persName>George Harrison</persName>
   <persName>Ringo Starr</persName>
  </desc>
 </state>
</org>
An org may contain subordinate orgs:
<org>
 <orgName>Oxford University Computing Services</orgName>
 <org>
  <orgName>Information and Support Group</orgName>
 </org>
 <org>
  <orgName>Infrastructure Group</orgName>
  <org>
   <orgName>Networking Team</orgName>
  </org>
  <org>
   <orgName>System Development Team</orgName>
  </org>
 </org>
 <org>
  <orgName>Learning Technologies Group</orgName>
 </org>
</org>
The following example demonstrates the use of the listOrg element to group together a number of org elements, each of which is defined solely by means of an informal description, itself containing other names.
<p>The TEI institutional hosts are: <listOrg>
  <org xml:id="bu">
   <orgName>Brown University</orgName>
   <desc>The host contribution is made jointly by the <name type="project">Brown University Women Writers Project</name> and the
   <orgName>Brown University Library's Center for Digital
         Initiatives</orgName>.</desc>
  </org>
  <org xml:id="na">
   <orgName>Nancy</orgName>
   <desc>Hosting is provided by a group of institutions located in
       Nancy, France, coordinated by <orgName>Loria</orgName> and also
       including <orgName>ATILF</orgName> and <orgName>INIST</orgName>.</desc>
  </org>
  <org xml:id="ou">
   <orgName>Oxford University</orgName>
   <desc>Hosting is provided by the <orgName>Research Technologies
         Service</orgName> at <orgName>Oxford University Computing
         Services</orgName>.</desc>
  </org>
  <org xml:id="uv">
   <orgName>University of Virginia</orgName>
   <desc>Virginia's host support comes jointly from the
   <orgName>Institute for Advanced Technology in the
         Humanities</orgName> and the <orgName>University of Virginia
         Library</orgName>.</desc>
  </org>
<!-- from http://www.tei-c.org/About/hosting.xml-->
 </listOrg>
</p>
In a more elaborated version of this example, the organizational names tagged using orgName might be linked using the key or ref attribute to a unique org element elsewhere.

13.3.4 Places

In 13.2.3 Place Names we discuss various ways of naming places such as towns, countries, etc. In much the same way as these Guidelines distinguish between the encoding of names for people and the encoding of other data about people, so they also distinguish between the encoding of names for places and the encoding of other data about places. In this section we present elements which may be used to record in a structured way data about places of any kind which might be named or referenced within a text. Such data may be useful as a way of normalising or standardizing references to particular places, as the raw material for a gazetteer or similar reference document associated with a particular text or set of texts, or in conjunction with any form of geographical information system.

The following elements are provided for this purpose:
  • listPlace (elenco dei luoghi) contiene una lista di luoghi, eventualmente seguita da una lista di relazioni tra questi (ad eccezione di quella contenete-contenuto)
  • place contiene informazioni relative a un luogo geografico

The model.placeStateLike class contains elements describing characteristics of a place which have a definite duration, such as its name. Any member of the model.placeNamePart may be used for this purpose, since a place element will usually contain at least one, and possibly several, placeName-like elements indicating the names associated with it, by different people, in different languages, or at different times.

For example, the modern city of Lyon in France was in Roman times known as Lugdunum. Although the modern and the Roman city are not physically co-extensive, they have significant areas which overlap, and we may therefore wish to regard them as the same place, while supplying both names with an indication of the time period during which each was current.

A place is defined, however, by its physical location, which does not typically change over time; we regard the location therefore as a trait of the place, and represent it by means of elements from the model.placeTraitLike class. Locations may be specified in a number of ways: as a set of coordinates defining a point or an area on the surface of the earth, or by providing a description of how the place may be found, usually in terms of other place names. For example, we can identify the location of the Canadian city of London, either by specifying its latitute and longitude, or by specifying that we mean the city called London located in the province called Ontario within the country called Canada.

In addition we may wish to supply a brief characterization of the place identified, for example to state that it is a city, an administrative area such as a country, or a landmark of some kind such as a monument or a battlefield. If our typology of places is simple, the open ended type attribute is the easiest way to represent it: so we might say <place type="city">, <place type="battlefield"> etc.

Within the place element, the following elements may be used to provide more information about specific aspects of the place in a structured form:
  • placeName contiene l'indicazione assoluta o relativa di un nome di luogo
  • location definisce la posizione di un luogo tramite una serie di coordinate geografiche, in termini di entità geopolitiche definite da altri o sotto forma di indirizzo
13.3.4.1 Varieties of Location
A location may be specified in one or more of the following ways:
  1. by supplying a string representing its coordinates in some standardized way within a geo element, as shown below
  2. by supplying one or more place name component elements (e.g. country, settlement etc.) to place it within a geo-political context
  3. by supplying a postal address, e.g. using the address element
  4. by supplying a brief textual description, e.g. using the desc element
  5. by using a non-TEI XML vocabulary such as the Geography Markup Language
We give examples of all of these methods in the remainder of this section.
The simplest method of specifying a location is by means of its geographic coordinates, supplied within the geo element. This may be used to supply any kind of positional information, using one of the many different geodetic systems available. Such systems vary in their format, in their scope or coverage, and more fundamentally in the reference frame (the ‘datum’) used for the coordinate system itself. The default recommended by these Guidelines is to supply a string containing two real numbers separated by whitespace, of which the first indicates latitude and the second longitude according to the 1984 World Geodetic System (WGS84); this is the system currently used by most GPS applications which TEI users are likely to encounter.41We might therefore record the information about the place known as ‘Lyon’ as follows:
<place xml:id="LYON1type="city">
 <placeName notBefore="1400">Lyon</placeName>
 <placeName notAfter="0056">Lugdunum</placeName>
 <location>
  <geo>41.687142 -74.870109</geo>
 </location>
</place>
Identifying Lyon by its geo-political status as a settlement within a country forming part of a larger political entity, we might represent the same ‘place’ as follows:
<place xml:id="LYON2">
 <placeName notBefore="1400">Lyon</placeName>
 <placeName notAfter="0056">Lugdunum</placeName>
 <location>
  <bloc>EU</bloc>
  <country>France</country>
 </location>
</place>
Elements such as bloc are specialised forms of placeName, as discussed in 13.2.3.1 Geo-political Place Names.
We may use the same procedure to represent the location of smaller places, such as a street or even an individual building:
<place type="building">
 <placeName>Brasserie Georges</placeName>
 <location>
  <country key="FR"/>
  <settlement type="city">Lyon</settlement>
  <district type="arrondissement">Perrache</district>
  <placeName type="street">Rue de la Charité</placeName>
 </location>
</place>
Note the use of the type attribute to categorize more precisely both the kind of place concerned (a building) and the kind of name used to locate it, for example by characterizing the generic district as an ‘arrondissement’.
We may even wish to treat imaginary places in the same way:
<place type="imaginary">
 <placeName>Atlantis</placeName>
 <location>
  <offset>beyond</offset>
  <placeName>The Pillars of <persName>Hercules</persName>
  </placeName>
 </location>
</place>
A location sometimes resembles a set of instructions for finding a place, rather than a name:
<place xml:id="MYF">
 <placeName notAfter="1969">Yasgur's Farm</placeName>
 <placeName notBefore="1969">Woodstock Festival Site</placeName>
 <location>
  <measure>one mile</measure>
  <offset>north west of</offset>
  <settlement>Bethel</settlement>
  <region>New York</region>
 </location>
</place>
The element address may also be used to identify a location in terms of its postal or other address:
<place type="cemetery">
 <placeName>Protestant Cemetery</placeName>
 <placeName type="officialxml:lang="it">Cimitero Acattolico</placeName>
 <location type="geopolitical">
  <country>Italy</country>
  <settlement>Rome</settlement>
  <district>Testaccio</district>
 </location>
 <location type="address">
  <address>
   <addrLine>Via Caio Cestio, 6</addrLine>
   <addrLine>00153 Roma</addrLine>
  </address>
 </location>
</place>
When, as here, the same place is given multiple locations, the type attribute should be used to characterize the kind of location, as a means of indicating that these are alternative ways of identifying the same place, rather than that place is spread across several locations.

The location element may thus identify a place to a greater or lesser degree of precision, using a variety of means: a name, a set of names, or a set of coordinates. The geo element introduced earlier is by default understood to supply a value expressed in a specific (and widely used) notation; this may be modified in two ways.

Firstly, the content of the geo element could be interpreted in some other way, that is, according to some different geodetic system. By default, a standard known as the World Geodetic System (WGS) is employed; the following element is provided to indicate (within the header of a document) a different notation, or one based on a different datum, has been employed:
  • geoDecl (dichiarazione di coordinate geografiche) documenta la notazione e il dato utilizzati per le coordinate geografiche espressi come contenuto di un elemento geo collocato altrove all'interno del documento
    datumindica un nome in codice comunemente impiegato per il dato utilizzato
Secondly, the element geo may be redefined to contain markup from a different XML vocabulary which is specifically designed to represent this kind of information. This technique is used throughout the Guidelines where specialized markup is required, for example to embed mathematical expressions or vector graphics, and is further described and exemplified in 23.2.4 Examples of Modification . For geographic information, suitable non-TEI vocabularies include:
  • the Geographical Markup Language (GML) being defined by the OGC42
  • the Keyhole Markup Language (KML) now used by Google Maps43
In the following example, we have defined the location of the place ‘Lyon’ using GML and indicated the two names associated with it at different times:
<place type="city">
<placeName notBefore="1400">Lyon</placeName>
<placeName notAfter="0056">Lugdunum</placeName>
<location>
<geo>
<gml:Polygon>
<gml:exterior>
<gml:LinearRing> 45.256 -110.45 46.46 -109.48 43.84 -109.86 45.8 -109.2
45.256 -110.45 </gml:LinearRing>
</gml:exterior>
</gml:Polygon></geo>
</location>
</place>

A bibl element may be used within location to indicate the source of the location information.

13.3.4.2 Multiple Places
A place may contain other places. This containment relation can be directly modelled in XML: thus we can say that the towns of Vilnius and Kaunas are both in a place called Lithuania (or Lietuva) as follows:
<place>
 <country>Lithuania</country>
 <country xml:lang="lt">Lietuva</country>
 <place>
  <settlement>Vilnius</settlement>
 </place>
 <place>
  <settlement>Kaunas</settlement>
 </place>
</place>

This does not, of course, imply that Vilnius and Kaunas are the only places constituting Lithuania; only that they are within it. A separate place element may indicate that it is a part of Lithuania by supplying a relation element, as discussed below (13.3.4.4 Relations Between Places).

As a further example, the islands of Mauritius, Réunion, and Rodrigues are collectively known as the Mascarene Islands. Grouped together with Mauritius there are also several smaller offshore islands, with rather picturesque French names. These offshore islands do not however constitute an identifiable place as a whole. One way of representing this is as follows:
<place type="islandGroup">
 <placeName>Mascarene Islands</placeName>
 <placeName>Mascarenhas Archipelago</placeName>
 <place type="island">
  <placeName>Mauritius</placeName>
  <listPlace type="offshoreIslands">
   <place>
    <placeName>La roche qui pleure</placeName>
   </place>
   <place>
    <placeName>Ile aux cerfs</placeName>
   </place>
  </listPlace>
 </place>
 <place type="island">
  <placeName>Rodrigues</placeName>
 </place>
 <place type="island">
  <placeName>Réunion</placeName>
 </place>
</place>
Here is a more complex example, showing the variety of names associated at different times and in different languages with a set of hierarchically grouped places — the settlement of Carmarthen Castle, within the town of Carmarthen, within the administrative county of Carmarthenshire, Wales.
<place xml:id="walestype="country">
 <placeName xml:lang="cy">Cymru</placeName>
 <placeName xml:lang="en">Wales</placeName>
 <placeName xml:lang="la">Wallie</placeName>
 <placeName xml:lang="la">Wallia</placeName>
 <placeName xml:lang="fro">Le Waleis</placeName>
 <place xml:id="carmarthenshiretype="region">
  <region type="countyxml:lang="ennotBefore="1284">Carmarthenshire</region>
  <place xml:id="carmarthentype="settlement">
   <placeName xml:lang="en">Carmarthen</placeName>
   <placeName xml:lang="lanotBefore="1090notAfter="1300">Kaermerdin</placeName>
   <placeName xml:lang="cy">Caerfyrddin</placeName>
   <place xml:id="carmarthen_castletype="castle">
    <settlement>castle of Carmarthen</settlement>
   </place>
  </place>
 </place>
</place>

As noted previously, country, region, and settlement are all specializations of the generic placeName element; they are not specializations of the place element. If it is desired to distinguish amongst kinds of place this can only be done by means of the type attribute as in the above example.

This use of multiple place elements should be distinguished from the (possibly simpler) case where a number of places with some property in common are being grouped together for convenience, for example, in a gazetteer. The listPlace element is provided as a means of grouping places together where there is no implication that the grouped elements constitute a distinct place. For example:
<place type="county">
 <placeName>Herefordshire</placeName>
 <listPlace type="villages">
  <place>
   <placeName>Abbey Dore</placeName>
   <location>
    <geo>51.969604 -2.893146</geo>
   </location>
  </place>
  <place>
   <placeName>Acton Beauchamp</placeName>
  </place>
<!-- etc -->
 </listPlace>
 <listPlace type="towns">
  <place>
   <placeName>Hereford</placeName>
  </place>
  <place>
   <placeName>Leominster</placeName>
  </place>
<!-- etc -->
 </listPlace>
</place>
13.3.4.3 States, Traits, and Events
There are many different kinds of information which it might be considered useful to record for a place in addition to its name and location, and the categories selected are likely to be very project-specific. As with persons therefore these Guidelines make no claim to comprehensiveness in this context. Instead, the generic state, trait, and event elements defined by this module should be used. Each of these may be customized for particular needs by means of their type attribute. These are complemented by a small number of predefined elements of general utility:
  • population contiene informazioni relative alla popolazione di un dato luogo
  • climate contiene informazioni relative al clima fisico di un luogo
  • terrain contiene informazioni relative al terreno fisico di un luogo

These are all specializations of the generic trait element. This element may be used for almost any kind of event in the life of a place; no specialized version of this element is proposed, nor do we attempt to enumerate the possible values which might be appropriate for the type attribute on any of these generic elements.

Here is an example, showing how the specific and generic elements may be combined:
<place xml:id="IS">
 <placeName xml:lang="en">Iceland</placeName>
 <placeName xml:lang="is">Ísland</placeName>
 <location>
  <geo>65.00 -18.00</geo>
 </location>
 <terrain>
  <desc>Area: 103,000 sq km</desc>
 </terrain>
 <state type="governancenotBefore="1944">
  <p>Constitutional republic</p>
 </state>
 <state type="governancenotAfter="1944">
  <p>Part of the kingdom of <placeName key="DK">Denmark</placeName>
  </p>
 </state>
 <event type="governancewhen="1944-06-17">
  <desc>Iceland became independent on 17 June 1944.</desc>
 </event>
 <state type="governancefrom="1944-06-17">
  <p>An independent republic since June 1944</p>
 </state>
</place>
In the following example, the climate example is used to provided a detailed discussion of this particular aspect of the information available about a particular place:
<place xml:id="greece">
 <placeName>Greece</placeName>
 <climate>
  <desc>Greece's climate is divided into three well defined
     classes:</desc>
  <climate>
   <label>Mediterranean</label>
   <desc>It features mild, wet winters and hot, dry
       summers. Temperatures rarely reach extremes, although snowfalls do
       occur occasionally even in <placeName>Athens</placeName>,
   <placeName>Cyclades</placeName> or <placeName>Crete</placeName>
       during the winter.</desc>
  </climate>
  <climate>
   <label>Alpine</label>
   <desc>It is found primarily in <placeName>
     <offset>Western</offset>
         Greece</placeName> (<placeName>Epirus</placeName>,
   <placeName>
     <offset>Central</offset> Greece</placeName>,
   <placeName>Thessaly</placeName>,
   <placeName>
     <offset>Western</offset> Macedonia</placeName> as well
       as central parts of <placeName>Peloponnesus</placeName> like
   <placeName>Achaea</placeName>, <placeName>Arcadia</placeName> and
       parts of <placeName>Laconia</placeName> where the Alpine range pass
       by)</desc>
  </climate>
  <climate>
   <label>Temperate</label>
   <desc>It is found in <placeName>
     <offset>Central</offset> and
    <offset>Eastern</offset> Macedonia</placeName> as well as in
   <placeName>Thrace</placeName> at places like
   <placeName>Komotini</placeName>, <placeName>Xanthi</placeName> and
   <placeName>
     <offset>northern</offset> Evros</placeName>. It features
       cold, damp winters and hot, dry summers.</desc>
  </climate>
 </climate>
</place>
As the above exanmple shows, state and trait elements, and others of the same class, can be nested hierarchically within each other. When this is done, values for the type attribute are to be understood as cumulatively inherited, as elsewhere in the TEI scheme (for example on category or linkGrp). In the following example, the outermost population element concerns the squirrel population between the dates given. This is then broken down into red and gray squirrel populations, and within that into male and female:
<population
  type="squirrel"
  notBefore="1901"
  notAfter="1902-01-11"
  resp="#strabo">

 <population type="redwhen="1901-01-10">
  <population type="female">
   <desc>12</desc>
  </population>
  <population type="male">
   <desc>15</desc>
  </population>
 </population>
 <population type="graywhen="1902-01-10cert="high">
  <population type="female">
   <desc>23</desc>
  </population>
  <population type="malecert="lowresp="#biber">
   <desc>45</desc>
  </population>
 </population>
</population>
The dating and responsibility attributes here behave slightly differently from the type attribute: responsibility is not an additive property, and therefore an element either states it explicitly, or inherits it from its nearest ancestor. Dating is slightly different again, in that a child element may specify a date more precisely than its parent, as in the example above
Events may also be subdivided into other events. For example, a two part meeting might be represented as follows:
<event type="meetingwhen="2007-05-29">
 <desc>All day meeting to resolve content models</desc>
 <event type="preamblenotAfter="13:00:00">
  <desc>first part</desc>
 </event>
 <event type="conclusionsnotBefore="13:00:00">
  <desc>second part</desc>
 </event>
</event>
13.3.4.4 Relations Between Places
The relation element may also be used to express relationships of various kinds between places, or between places and persons, in much the same way as it is used to express relationships between persons alone. Returning to the Mascarene Islands example cited above, we might define the island group and its constituents separately, but indicate the relationship by means of a relation element:
<listPlace>
 <place xml:id="MASC">
  <placeName>Mascarene islands</placeName>
  <placeName>Mascarenhas Archipelago</placeName>
 </place>
 <place xml:id="MRU">
  <placeName>Mauritius</placeName>
<!-- ... -->
 </place>
 <place xml:id="ROD">
  <placeName>Rodrigues</placeName>
 </place>
 <place xml:id="REN">
  <placeName>Réunion</placeName>
 </place>
 <relation name="containsactive="#MASCpassive="#ROD #MRU #REN"/>
</listPlace>
This ‘stand off’ style of representation has the advantage that we can now also represent the fact that a place may be a ‘part of’ more than one other place; for example, Réunion is part of France, as well as part of the Mascarenes. If we add a declaration for France to the list above:
<place type="countryxml:id="FRA">
 <placeName>France</placeName>
</place>
we can now model this dual allegiance by means of a relation element:
<relation name="partOfactive="#RENpassive="#FRA #MASC"/>

13.3.5 Names and Nyms

So far we have discussed ways in which a name or referring string encountered in running text may be resolved by considering the object that the name refers to: in the case of a personal name, the name refers to a person; in the case of a place name, to a place, for example. The resolution of this reference is effected by means of the key or ref attributes available to all elements which are members of the att.naming class, such as persName or placeName and their more specialized variants such as forename or country. However, names can also be regarded as objects in their own right, irrespective of the objects to which they are attached, notably in onomastic studies. From this point of view, the names John in English, Jean in French, and Ivan in Russian might all be regarded as existing independently of any person to which they are attached, and also independently of any variant forms that might be attested in different sources (such as Jon or Johnny in English, or Jehan or Jojo in French). We use the term nym to refer to the canonical or normalized form of a name regarded in such a way, and provide the following elements to encode it:
  • listNym (elenco di nomi canonici) contiene una lista di nym, cioè nomi standard per qualsiasi cosa
  • nym (nome canonico) contiene la definizione di un nome o di una parte di nome canonici di qualsiasi tipo
Any element which is a member of the att.naming class may use the attribute nymRef to indicate the nym with which it corresponds. Thus, given the following nym for the name Antony:
<listNym>
 <nym xml:id="N123">
  <form>Antony</form>
 </nym>
<!-- other nym definitions here -->
</listNym>
an occurrence of this name in running text might be encoded as follows:
<forename nymRef="#N123">Tony</forename> Blair
Note that this association (between "Tony" and "Antony") has nothing to do with any individual who might use the name.
The person identified by this particular Tony may however be indicated independently using the ref attribute, either on the forename or on the whole name component:
<forename nymRef="#N123ref="#BLT">Tony</forename>
....

<person xml:id="BLT">
 <persName>Tony Blair</persName>
 <occupation>politician</occupation>
</person>
The nym element may be thought of as providing a specialised kind of dictionary entry. Like a dictionary entry, it may contain any element from the model.entryPart class, such as form, etym, etc. For example, we may show that the canonical form for a given nym has two orthographic variants in this way:
<nym xml:id="J451">
 <form>
  <orth xml:lang="en-US">Ian</orth>
  <orth xml:lang="en-x-Scots">Iain</orth>
 </form>
</nym>
Because a schema intending to make use of the nym or listNym element must include the dictionaries module as well as the namesdates module, many other elements are available in addition to form. For example, to provide a more complex etymological decomposition of a name, we might use the existing etym element, as follows:
<nym xml:id="XYZ">
 <form>Bogomil</form>
 <etym>Means <gloss>favoured by God</gloss> from the
 <lang>Slavic</lang> elements <mentioned xml:lang="ru">bog</mentioned>
  <gloss>God</gloss> and <mentioned xml:lang="ru">mil</mentioned>
  <gloss>favour</gloss>
 </etym>
</nym>
Where it is necessary to mark the substructure of nyms, this might be done by marking seg elements within the form:
<nym xml:id="ABC">
 <form>
  <choice>
   <seg type="morph">
    <seg>Bog</seg>
    <seg>o</seg>
    <seg>mil</seg>
   </seg>
   <seg type="morph">
    <seg>Bogo</seg>
    <seg>mil</seg>
   </seg>
  </choice>
 </form>
</nym>
The seg element used here is provided by the TEI linking module, which would therefore also need to be included in a schema built to validate such markup. Other possibilities for more detailed linguistic analysis are provided by elements included in that and the analysis (see 17 Simple Analytic Mechanisms) or ISOfs modules (see 18 Feature Structures).
Alternatively, each of the constituents of Bogomil might be regarded as a nym in its own right:
<nym xml:id="B1type="part">
 <form>bog</form>
</nym>
<nym xml:id="M1type="part">
 <form>mil</form>
</nym>
Within running text, a name can specify all the nyms associated with it:
...<name nymRef="#B1 #M1">Bogomul</name>...
Similarly, within a nym, the attribute parts is used to indicate its constituent parts, where these have been identified as distinct nyms:
<nym xml:id="BM1parts="#B1 #M1">
 <form>Bogomil</form>
</nym>
The nym element may also combine a number of other nym elements together, where it is intended to show that they are all regarded as variations on the same root. Thus the different forms of the name John, all being derived from the same Latin root, may be represented as a hierarchic structure like this:
<nym xml:id="J45">
 <form xml:lang="la">Iohannes</form>
 <nym xml:id="J450">
  <form xml:lang="en">John</form>
  <nym xml:id="J4501">
   <form>Johnny</form>
  </nym>
  <nym xml:id="J4502">
   <form>Jon</form>
  </nym>
 </nym>
 <nym xml:id="J455">
  <form xml:lang="ru">Ivan</form>
 </nym>
 <nym xml:id="J453">
  <form xml:lang="fr">Jean</form>
 </nym>
</nym>
The nym element may be used for components of geographical or organizational names as well. For example:
<geogName key="LAEI1type="hill">
 <geogFeat xml:lang="gdnymRef="#LAIRG">Lairig</geogFeat>
 <name>Eilde</name>
</geogName>
...

<nym xml:id="LAIRG">
 <form xml:lang="gd">lairig</form>
 <def>sloping hill face</def>
</nym>
...

As noted above, use of these elements implies that both the dictionaries and the namesdates modules are included in a schema.

13.3.6 Dates and Times

The following elements for the encoding of dates and times were introduced in section 3.5.4 Dates and Times:
  • date contiene una data in qualsiasi foemato
  • time contiene un sintagma che si riferisce ad un ora del giorno in qualsiasi formato.
The current module namesdates provides a mechanism for more detailed encoding of relative dates and times. A relative temporal expression describes a date or time with reference to some other (absolute) temporal expression, and thus may contain an offset element in addition to one or more date or time elements:
  • offset la parte di un'espressione temporale o spaziale relativa che indica la direzione dello sfasamento tra due nomi di luogo, date o orari all'interno dell'espressione
As members of the att.datable and att.duration classes, which in turn are members of att.datable.w3c and att.duration.w3c respectively, the date and time elements share the following attributes:
  • att.datable.w3c indica degli attributi per la normalizzazione di elementi che contengono eventi databili utilizzando i tipi di dati del W3C
    whenindica il valore di una data o di un orario in un formato standard
  • att.duration.w3c attributi per la registrazione di durate temporali normalizzate
    dur (durata) indica la durata nel tempo di tale elemento
13.3.6.1 Relative Dates and Times

As noted above, relative dates and times such as ‘in the Two Hundredth and First Year of the Republic’, ‘twenty minutes before noon’, and, more ambiguously, ‘after the lamented death of the Doctor’ or ‘an hour after the game’ have two distinct components. As well as the absolute temporal expression or event to which reference is made (e.g. ‘noon’, ‘the game’, ‘the death of the Doctor’, ‘[the foundation of] the Republic’), they also contain a description of the ‘distance’ between the time or date which is indicated and the referent expression (e.g. ‘the Two Hundredth and First Year’, ‘twenty minutes’, ‘an hour’); and (optionally) an ‘offset’ describing the direction of the distance between the time or date indicated and the referent expression (e.g. ‘of’ implying after, ‘before’, ‘after’).

The ‘distance’ component of a relative temporal expression may be encoded as a temporal element in its own right using either date or time, or with the more generic measure element. A special element, offset, is provided by this module for encoding the ‘offset’ component of a relative temporal expression. The absolute temporal expression contained within the relative expression may be encoded with a date or time element; in turn, those elements may of course be relative, and thus contain date or time elements within themselves. This allows for deeply nested structures such as ‘the third Sunday after the first Monday before Lammastide in the fifth year of the King's second marriage ... ’ but so does natural language.

In the following examples, the when and dur attributes have been used to simplify processing of variant forms of expression:
<date when="1786-12-11">
 <date dur="P14D">A fortnight</date>
 <offset>before</offset>
 <date when="1786-12-25type="holiday">Christmas 1786</date>
</date>
I reached the station <time when="14:15:00">
 <time dur="PT30M0S">precisely half an hour</time>
 <offset>after</offset>
 <time when="13:45:00type="occasion">the departure of the afternoon train to Boston</time>
</time>
In the following example, a nested date element is used to show that ‘my birthday’ and the cited date are parts of the same temporal expression, and hence to disambiguate the phrase ‘A week before my birthday on 9th December’:
<date when="--12-02">
 <date>A week</date>
 <offset>before</offset>
 <date when="--12-09">
  <date type="occasion">my birthday</date>
   on <date>9th December</date>
 </date>
</date>
The alternative reading of this phrase could be encoded as follows:
<date when="--12-09">
 <date>A week</date>
 <offset>before</offset>
 <date type="occasionwhen="--12-16">my birthday</date>
on <date>9th December</date>
</date>
Where more complex or ambiguous expressions are involved, and where it is desirable to make more explicit the interpretive processes required, the feature structure notation described in chapter 18 Feature Structures is recommended. Consider, for example, the following temporal expression which occurs in the Scottish Temperance Review of August 1850, referring to the summer holiday known in Glasgow simply as ‘the Fair’:
Not only is the city,
<date ana="#gf50">during the Fair</date>, a horrible nucleus of
immorality and wickedness; it sends our multitudes to pollute and
demoralize the country.
For the definition of the ana attribute, see chapter 17 Simple Analytic Mechanisms (in particular 17.2 Global Attributes for Simple Analyses). It is used here to link the temporal phrase with an interpretation of it. Like most traditional fairs and market days, the Glasgow Fair was established by local custom and could vary from year to year. Consequently, in order to provide such an interpretation, it is necessary to drawn upon additional information which may or may not be located in the particular text in question. In this case, it is necessary at least to know the spatial and temporal context (year and place) of the fair referred to. These and other features required for the analysis of this particular temporal expression may be combined together as one feature structure of type date-analysis:
<fs xml:id="gf50type="date-analysis">
 <f name="event">
  <string>the Fair</string>
 </f>
 <f name="place">
  <string>Glasgow</string>
 </f>
 <f name="year">
  <numeric value="1850"/>
 </f>
 <f name="from-value">
  <string>1850-08-08</string>
 </f>
 <f name="to-value">
  <string>1850-09-19</string>
 </f>
</fs>
For further discussion of feature structure representation see chapter 18 Feature Structures.
13.3.6.2 Absolute Dates and Times

The following are examples of absolute temporal expressions.

The university's view
of American affairs produced a stinging attack by Edmund Burke in the
Commons debate of <date when="1775-10-26">26 October 1775</date>
<date when="1993-05-14">Friday, 14 May 1993</date>
It may be useful to categorize a temporal expression which is given in terms of a named event, such as a public holiday for dates, or a named time such as ‘tea time’ or ‘matins’:
In New York,
<date type="occasionwhen="--01-01">New Years Day</date> is the
quietest of holidays, <date when="--07-04type="occasion">Independence
Day</date> the most turbulent.
Absolute temporal expressions denoting times which are given in terms of seconds, minutes, hours, or of well-defined events (e.g. ‘noon’, ‘sunset’) may similarly be represented using the time element.
The train leaves for Boston at
<time type="twentyfourHourwhen="13:45:00">13:45</time>
At <time type="occasion">sunset</time> we walked to the beach.
The train leaves for Boston at
<time xml:lang="en-UStype="descriptivewhen="13:45:00-05:00"> a quarter of two
</time>
13.3.6.3 More Expressive Normalizations
The attributes for normalization of dates and times so far described use a standard format defined by XML Schema Part 2: Datatypes Second Edition. This format is widely accepted and has significant software support. It is essentially a profile of ISO 8601 — Data elements and interchange formats — Information interchange — Representation of dates and times. The ISO standard provides formats not available in the W3C recommendation. For example, the capability to refer to a date by its ordinal date or week date, or to a calendar week. In cases where it is desirable to use these more specialized formats, this module provides a corresponding additional class of attributes for them:
  • att.datable.iso indica attributi per la normalizzazione tramite lo standard ISO 8601 di elementi che contengono eventi databili
    when-isoindica il valore di una data o di un orario in un formato standard
    notBefore-isospecifica la prima data possibile per un evento nel formato standard aaaa-mm-gg
    notAfter-isospecifica l'ultima data possibile per un evento nel formato standard aaaa-mm-gg
    from-isoindica l'inizio del periodo nel formato standard
    to-isoindica la fine del periodo nel formato standard
  • att.duration.iso attributi per registrare durate temporali normalizzate
    dur-iso (durata) indica la durata nel tempo dell'elemento
These attributes rely on the following datatype macros:
  • data.temporal.iso defines the range of attribute values expressing a temporal expression such as a date, a time, or a combination of them, that conform to the international standard Data elements and interchange formats – Information interchange – Representation of dates and times.
  • data.duration.iso defines the range of attribute values available for representation of a duration in time using ISO 8601 standard formats

The when and dur attributes are both used to provide a standardized or regularized form for the content of an element, conforming to a subset of the possible formats defined by the relevant international standard (ISO 8601) as profiled by XML Schema Part 2: Datatypes Second Edition.

For example:
<date when="1807-06-09">June 9th</date> The
period is approaching which will terminate my present
copartnership. On the <date when="1808-01-01">1st Jany.</date> next,
it expires by its own limitation.

13.4 Module for Names and Dates

Argomenti « 12 Critical Apparatus » 14 Tables, Formulæ, and Graphics

Note
39.
In the module described by chapter 22 Documentation Elements a similar method is used to link element descriptions to the modules or classes to which they belong, for example.
40.
Strictly, a suitable value such as figurative should be added to the two place names which are presented periphrastically in the second example here, in order to preserve the distinction indicated by the choice of rs rather than name to encode them in the first version.
41.
See http://earth-info.nga.mil/GandG/wgs84/index.html. The most recent revision of this standard is known as the Earth Gravity Model 1996.
42.
The OGC is an international voluntary consensus standards organization whose members maintain the Geography Markup Language standard. The OGC coordinates with the ISO TC 211 standards organization to maintain consistency between OGC and ISO standards work. GML is in the process of being adopted as an ISO standard (ISO 19136) and is expected to be released as an International Standard in 2007.

[English] [Deutsch] [Español] [Italiano] [Français] [日本語] [中文]



Copyright TEI Consortium 2007 Licensed under the GPL. Copying and redistribution is permitted and encouraged.
Version 1.2.0. Last updated on October 31st 2008.This page generated on 2008-11-01T14:24:26Z